
Structuring data and organizing types
NET7212 — Safe System Programming (in Rust)

Samuel Tardieu Stefano Zacchiroli
2023-10-17

More on composite types

Traits and generics

Standard traits

More on generics

Iterators

The iterator language

Takeaways

2/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

More on composite types

3/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Reminder: arrays, vectors and slices

Rust distinguishes between arrays, vectors and slices:

An array contains a fixed number of elements of the same type.
A vector is a growable/shrinkable collection of elements of the same type.
A slice is a collection of consecutive elements whose size is known at run time only.

Thanks to the Deref trait (more on this later), a reference to an array or a vector can be automatically
made into a reference to a slice.

1 let my_array: [u32; 4] = [10, 20, 30, 40];
2
3 let mut my_vec: Vec<u32> = vec![10, 20, 30, 40];
4 my_vec.push(50);
5
6 let slice1: &[u32] = &my_array; // This slice has size 4
7 let slice2: &[u32] = &my_vec; // This slice has size 5

A reference to a slice encodes both the memory location and the number of elements (fat pointer).

4/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Slices and pattern matching

Slices can be used in a pattern matching environment:
1 fn describe(slice: &[u32]) {
2 match slice {
3 [] => println!("Empty"),
4 [x] => println!("One unique element {x}"),
5 [x, y] => println!("Two elements {x} and {y}"),
6 [x, y, ..] => println!("More than two elements, starting with {x} and {y}"),
7 }
8 }
9

10 fn main() {
11 describe(&vec![10, 20, 30, 40]);
12 }

outputs:
More than two elements, starting with 10 and 20

5/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Reminder: strings

String instances contain valid UTF-8 strings. str is to String what [T] is to Vec<T>, i.e., a
memory area containing a string whose size is known at run time only:

1 let s1: &str = "Hello, world!"; // Points to read-only memory
2 let s2: String = String::from(s1); // Stored on the heap after copying the content of s1
3 let s3: &str = &s2; // Points to the heap data owned by s2

Similar to a slice, a reference to a str encodes both the memory location and the size of the string in
bytes using a fat pointer.

6/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Tuples

A tuple groups several elements together, possibly of different types:
1 fn main() {
2 let x: (String, u32) = (String::from("John Doe"), 23);
3 println!("Name: {}", x.0);
4 println!("Age: {}", x.1);
5 }

Elements in a tuple are accessed with .0, .1, etc. A tuple can also be used in a pattern matching
environment, for example a let:

1 fn main() {
2 let x: (String, u32) = (String::from("John Doe"), 23);
3 let (name, age) = x; // x is deconstructed here and ceases to exist
4 println!("Name = {name}, age = {age}");
5 }

7/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Structures

We have encountered structures in the lab sessions, but haven’t formally studied them yet. They allow
the grouping of several values, possibly of different types, together:

1 #[derive(Clone, Debug)]
2 pub struct Person {
3 pub name: String,
4 pub age: Option<u8>,
5 }

A structure can derive some traits (properties), such as Clone (resp. Debug): if all fields of the
structure are implicitly copiable (resp. displayable), the structure will also be implicitly copiable (resp.
displayable):

1 fn main() {
2 let person_a = Person { name: String::from("John Doe"), age: Some(23) };
3 let person_b = person_a.clone(); // Because of #[derive(Clone)]
4 println!("Person B = {person_b:?})"); // Because of #[derive(Debug)]
5 }

8/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Another name for structures

Let’s assume that type T1 can take 𝑛1 possible values, and type T2 can take 𝑛2 possible values.
1 pub struct S {
2 pub t1: T1,
3 pub t2: T2,
4 }

How many distinct values can S take?

S can take any combination of a T1 value with a T2 value, which makes a total of 𝑛1 × 𝑛2 values.
Structures are hence called product types in type theory�.

The following structure can take 256 × 2 × 2 = 1024 possible values:
1 pub struct S {
2 pub x: u8,
3 pub b: bool,
4 pub c: bool,
5 }

9/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://en.wikipedia.org/wiki/Type_theory

Structures and pattern matching

Structures can be used in a pattern matching environment. In this context, a field name alone (age)
means age: age. _ means “don’t care”, and .. means “and the other fields if any”.

1 fn describe(person: &Person) {
2 match person {
3 Person { age: Some(18), .. } => println!("A recent adult"),
4 Person { name, age: None } => println!("An ageless person named {name}"),
5 Person { name: _, age: Some(a) } => println!("A {a} year old person"),
6 }
7 }

Note how we are able to match person (of type &Person) against a Person like in the pattern
Person { name, age: None }. How can a reference ever match a non-reference?

Let’s talk a bit more about pattern matching.

10/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Interlude: pattern matching

Pattern matching tries to unify the pattern (below, Some(s)) with the data (o) it is matched against:
1 fn describe(o: Option<String>) {
2 match o {
3 Some(s) => println!("o contained a string: {s}"),
4 None => println!("o contained Nothing"),
5 }
6 // We want to do something else with o but it doesnt exist anymore :(
7 }

However, right after the match expression, o does no longer exist as it has been deconstructed.

What if we just want to peek inside the option and not deconstruct it?

11/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Interlude: pattern matching and ref

By using the ref keyword, we can indicate that we just want to obtain a reference to the value that was
unified with our variable instead of getting the value itself.

1 fn describe(o: Option<String>) {
2 match o {
3 Some(ref s) => println!("o contained a string: {s}"), // s is a &String
4 None => println!("o contained Nothing"),
5 }
6 println!("o still exists here, it has not been deconstructed: {o:?}");
7 }

In the example above, s is of type &String instead of type String, because of the ref s. Note that
ref mut also exists and would have given a &mut String if o was mutable.

12/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Interlude: pattern matching and non-reference patterns

There is a more ergonomic way than ref to get a reference on the inside of the option:
1 fn describe(o: Option<String>) {
2 match &o { // Note the "&" here
3 Some(s) => println!("o contained a string: {s}"), // s is a &String
4 None => println!("o contained Nothing"),
5 }
6 println!("o still exists here, it has not been deconstructed: {o:?}");
7 }

Since Some(s) can never match an &Option<String> as it is not a reference, the Rust compiler
tries adding a & in front of it as well as a ref before all free variables (or &mut/ref mut if the target is
a mutable reference):

Some(s) is transformed into &Some(ref s)
None is transformed into &None (no free variable to add ref to here)

Now the match branches are each correctly typed and may match the type of &o, that is
&Option<String>.

13/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Interlude: pattern matching and a mutable example

We want to write a function which takes a &mut Option<String> and appends a “!” character to its
content if it is not None. Any ideas?

1 fn maybe_append(o: &mut Option<String>) {
2 if let Some(s) = o { // s is of type &mut String
3 s.push('!');
4 }
5 }
6
7 fn main() {
8 let mut o: Option<String> = Some(String::from("Hello, world"));
9 maybe_append(&mut o);

10 println!("{o:?}"); // Displays: Some("Hello, world!");
11 }

The maybe_append function is transformed by the compiler into
1 fn maybe_append(o: &mut Option<String>) {
2 if let &mut Some(ref mut s) = o { // s is of type &mut String
3 s.push('!');
4 }
5 }

14/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Interlude: back to our structure

By applying the rules we just saw, we now understand that
1 fn describe(person: &Person) {
2 match person {
3 Person { age: Some(18), .. } => println!("A recent adult"),
4 Person { name, age: None } => println!("An ageless person named {name}"),
5 Person { name: _, age: Some(a) } => println!("A {a} year old person"),
6 }
7 }

is transformed by the compiler into
1 fn describe(person: &Person) {
2 match person {
3 &Person { age: Some(18), .. } => println!("A recent adult"),
4 &Person { ref name, age: None } => println!("An ageless person named {name}"),
5 &Person { name: _, age: Some(ref a) } => println!("A {a} year old person"),
6 }
7 }

ref name alone in a structure pattern is a shortcut for name: ref name.

15/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Implementation blocks

A structure, as all compound types, can be accompanied by implementation blocks:
1 impl Person {
2 pub fn new(name: &str) -> Self {
3 Person { name: String::from(name), age: None }
4 }
5
6 pub fn set_age(&mut self, age: u8) {
7 self.age = Some(age);
8 }
9 }

10
11 fn main() {
12 let mut person = Person::new("John Doe");
13 person.set_age(23); // Or person.age = Some(23)
14 }

In an implementation block, Self designates the type on which the implementation is defined.
Functions taking self, &self, &mut self or similar expressions are called methods. Other
functions are called associated functions.

16/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Implementation blocks (cont.)

Methods can be used to retrieve or set private fields:
1 pub struct Person {
2 name: String, // Note the absence of "pub" on those two fields. They are
3 age: Option<u8>, // accessible only by the current module and its descendants.
4 }
5
6 impl Person {
7 pub fn new(name: &str) -> Self { Person { name: String::from(name), age: None } }
8
9 pub fn name(&self) -> &str { &self.name }

10
11 // We do not provide a setter for "name" as we do not want it modified
12
13 pub fn age(&self) -> Option<u8> { self.age }
14
15 pub fn set_age(&mut self, age: u8) { self.age = Some(age) }
16 }

Lifetime rules guarantee that the reference returned by the .name() method cannot be used beyond
the lifetime of the Person it was obtained from.

17/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Structures as tuples

Instead of using named fields surrounded by “{}”, a structure can use a nameless tuple shape:
1 pub struct BytePair(u8, u8); // Store two bytes, without explicit field names
2
3 impl BytePair {
4 pub fn new(left: u8, right: u8) -> Self { // Here Self = BytePair
5 BytePair(left, right)
6 }
7
8 pub fn left(&self) -> u8 { self.0 }
9 pub fn right(&self) -> u8 { self.1 }

10 }
11
12 let p = BytePair(1, 42);
13 println!("pair ({}, {})", p.left(), p.right()); // Displays "pair (1, 42)"

18/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Enumerations

Enumerations represent exclusive variants. Each variant can be structure-like and store additional
fields:

1 pub enum Human {
2 Toddler,
3 Teen,
4 Adult { name: String, age: u8 }, // named fields .name and .age
5 Elder(String, u8), // positional fields .0 and .1
6 }

Pattern matching can be used the same way as on other types:
1 impl Human {
2 pub fn describe(&self) {
3 match self {
4 Human::Toddler | Human::Teen =>
5 println!("A small creature"),
6 Human::Adult { name: n, .. } | Human::Elder(n, _) =>
7 println!("An older person named {n}"),
8 }
9 }

10 }
19/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Another name for enumerations

If type T1 can take 𝑛1 possible values, and type T2 can take 𝑛2 possible values, how many different
values can E take?

1 pub enum E {
2 Variant1(T1),
3 Variant2(T2),
4 }

Since E can take any of T1 values with variant 1, or (exclusively) any of T2 values with variant 2, it can
take a total of 𝑛1 + 𝑛2 values. Enumerations are called sum types in type theory.

The following type can take 1 + 256 + 2 + 2 = 261 different values:
1 pub enum E {
2 Variant1, // Only 1 value, itself
3 Variant2(u8), // 256 values
4 Variant3(bool), // 2 values: true or false
5 Variant4(bool), // 2 values: true or false
6 }

20/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Some thoughts on the number of possible values

How many distinct values can the following types take?

pub struct S1 {
x: u8,
y: (),

}

S1 can take 256 × 1 = 256 values since ()
unique value is ().
pub struct S2 {

x: (),
y: (),

}

S2 can take only 1 × 1 = 1 value
pub enum Empty {}

Empty has 0 possible values. You can use the
Empty type, but you cannot instantiate it.

pub enum E1 {
Variant1,
Variant2(u8),
Variant3(Empty)

}

E1 can take 1 + 256 + 0 = 257 values. You
cannot build variant 3.
pub struct S3 {

x: u8,
y: Empty,

}

S3 can take 256 × 0 = 0 values. You cannot
build an instance of S3 since you will not be able
to build a value to initialize the y field.

21/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Memory representation

Here are some examples of the size used in memory to represent some types:

u8: 1 byte
i8: 1 byte
Empty: 0 bytes
(): 0 bytes
(u16, u16): 4 bytes
Vec<T>: 3 machine words (address, size, capacity) (+ the heap storage for the elements)
&i32 (reference): 1 machine word, i.e., 8 bytes on a 64 bit computer
&str (fat pointer): 2 machine words (address and size), i.e., 16 bytes on a 64 bit computer

Empty and () are called zero-sized types (ZST). Rust standard collections handles them specially: a
Vec<()> will never allocate any memory on the heap.

22/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Memory representation of a reference

How many distinct values can a Rust reference &u8 take on a 64 bit computer?

In Rust, a reference points onto a valid object and cannot be NULL (0). It has 264 − 1 values as it will
never contain the all-0 value.

How many distinct values can an Option<&u8> take on a 64 bit computer?

An Option<&u8> can be None (1 value) or Some(&x) if x is an u8 (264 − 1 values). The answer is:
Option<&u8> can take 264 values.

Rust will apply its null-pointer optimization (NPO) there: it guarantees that for every type T,
Option<&T> has the same size as &T. None will be represented in memory with the 0 value, which is
the only invalid reference for every type. Some(&x) will be represented the same way as &x, which
cannot be all 0.

This will become important when interfacing with other languages: NULL will become None, and a
non-null pointer will become Some(…), and vice-versa (cf. future lecture on FFI).

23/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Other high-level data structures

In addition to Vec<T>, the standard library contains high-level data structures in the
std::collections� module:

BinaryHeap<T>: a binary heap, or maximum priority queue
BinaryMap<K, V>: a key-value dictionary with O(log(N)) lookups and sorted keys
BinarySet<T>: a set with O(log(N)) lookups and sorted keys
HashMap<K, V>: a key-value dictionary with O(1) lookups
HashSet<T>: a set with O(1) lookups
LinkedList<T>: a doubly-linked list with O(1) pushing and popping at either end
VecDeque<T>: a vector which can be pushed to or popped from both ends

All those are safe compound types, as well as the other types we have seen so far.

24/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://doc.rust-lang.org/std/collections/index.html

Traits and generics

25/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Polymorphism

Code reuse is a desirable property in all non-trivial software systems. We will see in a future lecture
how packages, crates, and the module system helps with in-the-large, across-projects code reuse.

Other Rust features support within-project code reuse. Here are a couple of examples we have already
encountered in passing:

Vec<T> is a generic data structure: you can create a vector containing values of any type T,
including types that do not exist yet (and hence did not exist when Vec<T> was implemented).
Several types have a .fmt(...) method that is invoked to pretty print their values when passed
to println!() using {}. You can also invoke the method yourself, without caring about the
type. Those types share the Display trait.

Generics and traits are two forms of polymorphism� supported by Rust.

In this lecture we are going to learn about them and how they help reusing Rust code with either
minimal or absent performance penalty (so called “zero-cost abstractions”).

26/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)

Hello, traits world!

Traits, inspired by Haskell’s type classes�, are Rust’s (more powerful!) take on features like Java
interfaces and Python abstract base classes. Here’s the trait std::io::Write:

1 trait Write { // something a byte-stream can be written to (a "byte-oriented sink")
2 fn write(&mut self, buf: &[u8]) -> Result<usize>;
3 fn flush(&mut self) -> Result<()>;
4 fn write_all(&mut self, buf: &[u8]) -> Result<()> { ... } // default impl., calling write()
5 ... // more methods available
6 }

Some of the standard types that implement this trait are: File, TcpStream, Vec<u8>.
Therefore they all provide the shown methods (and more�).

1 use std::fs::File;
2 let mut local_file = File::create("hello.txt")?;
3 local_file.write_all(b"hello world\n")?;
4 local_file.flush()

1 let mut bytes = vec![];
2 bytes.write_all(b"hello world\n")?;
3 bytes.flush()?;
4 assert_eq!(bytes, b"hello world\n");

27/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://en.wikipedia.org/wiki/Type_class
https://doc.rust-lang.org/std/io/trait.Write.html

Traits and types

A trait usually denotes something a type can do, i.e., a capability.

Unlike classes in OOP, traits do not induce a strict hierarchy on code that implements them. Rather, a
type can implement multiple traits and a trait can be implemented by multiple types, in a N-M cardinality
relationship.

Some examples from the standard library:

Trait Capability Implemented by (e.g.)

std::io::Write can be written bytes to File, TcpStream, Vec<u8>
std::iter::Iterator can produce a sequence of values Range<i32>
std::clone::Clone can make copies of itself most stdlib types
std::fmt::Debug can be printed using {:?} most stdlib types

28/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Traits as adapters

Traits are more than inert interfaces. Traits can also provide (overridable) default implementations for
methods, that can rely on other trait methods (with or without default implementations).

This makes traits suitable for implementing the adapter design pattern� to lift small APIs (the
non-default methods that implementers must provide) to larger APIs (all trait methods: default or not).

1 trait CmpToZero {
2 fn is_zero(&self) -> bool; // no implementation, must be implemented by `impl` type
3 fn is_not_zero(&self) -> bool { // default implementation (can be overridden)
4 !self.is_zero()
5 }
6 }
7
8 struct Point { x: i32, y: i32 }
9 impl CmpToZero for Point {

10 fn is_zero(&self) -> bool {
11 (self.x == 0) && (self.y == 0)
12 }
13 }
14
15 assert!((Point { x: 1, y: -1 }).is_not_zero()); // use default implementation

29/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://en.wikipedia.org/wiki/Adapter_pattern

Traits and imports

One common gotcha of using Rust traits is that, unlike inherited methods in OOP languages, trait
methods are not in scope by default.
let mut buf: Vec<u8> = vec![];
buf.write_all(b"hello")?;

Let’s welcome the compiler explaining this to us with a super-helpful error message:
3 | buf.write_all(b"hello")?; // error: no method named `write_all`

| ^^^^^^^^^ method not found in `Vec<u8>`
[...]
1540 | fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {

| --------- the method is available for `Vec<u8>` here
|
= help: items from traits can only be used if the trait is in scope

help: the following trait is implemented but not in scope; perhaps add a `use` for it:
|

1 | use std::io::Write;

(Yes, some trait imports are part of the standard prelude, so that you don’t need use for popular traits
like Clone and Iterator.)

30/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Trait arguments

Types that implement a trait share a capability. A natural need is hence to write generic code that works
on all values sharing a capability.
How do we write a function that accepts any type that implements a given trait?
fn check(val: &impl CmpToZero) {

if val.is_zero() { println!("Zero") } else { println!("Not zero") };
}

&impl CmpToZero means “any type that implements the CmpToZero trait”.

We can even be more demanding, and request that a given argument implements multiple traits at
once (i.e., it’s a logical AND, not OR, so that your code can make assumptions about available
capabilities):
fn f(t: &(impl Trait1 + Trait2), u: &(impl Trait3 + Trait4)) -> usize {}

31/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Monomorphization

So when we use &impl values we perform virtual method calls like in other OOP languages (incurring
the cost of dynamic dispatch�, virtual method tables�, etc.), right?

Nope!

When you use &impl function parameters:

The function is instantiated with the actual type of the passed value (monomorphization).
If the function is called (statically) with N different types, N different copies of it will be instantiated
at compile time.
At runtime the type-appropriate version of the function is called, with zero overhead w.r.t. a normal
function (i.e., one without &impl args).

32/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://en.wikipedia.org/wiki/Dynamic_dispatch
https://en.wikipedia.org/wiki/Virtual_method_table

Trait objects

But Rust also supports OOP-style virtual methods via trait objects, denoted as dyn Trait. A value
of type dyn Trait has a dynamic type known only at runtime; at compile time we only know that the
type implements Trait.
use std::io::Write;
let mut buf: Vec<u8> = vec![];
let writer: dyn Write = buf; // error: `Write` does not have a constant size

Why is that?

In languages like Java most values are accessed indirectly via fixed-size references. In Rust references
are fixed-size too, but they are not the default value to manipulate values and referencing is explicit:
let mut buf: Vec<u8> = vec![];
let writer: &mut dyn Write = &mut buf; // Much better!

Welcome writer, our first a trait object.

33/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Memory layout of trait objects

(Image from Programming Rust�, full credits on last slide.)

In memory a trait object is a fat pointer
consisting of two pointers
One pointer to the object value (with the
common trifecta: buffer, capacity, length)
One pointer to a virtual table (vtable), used
for the dynamic dispatching of method
invocations on the trait object.

• Similar to C++: vtable is generated once at
compile time and shared by all objects of the
same type.

• Unlike C++: decoupling of vptr from the
struct, to avoid struct size inflation when
implementing many traits.

(You have encountered other fat pointers in the past: &str and &[]. They are the same kind of beast,
except those were data+length pointers vs data+vtable in this case.)

34/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://www.oreilly.com/library/view/programming-rust-2nd/9781492052586/

Trait object arguments

Function can expect trait object arguments, which are then automatically created by the compiler when
needed:

1 use std::io::Write;
2 fn say_hello(out: &mut dyn Write) -> std::io::Result<()> {
3 out.write_all(b"hello world\n")?;
4 out.flush()
5 }
6
7 use std::fs::File;
8 let mut local_file = File::create("hello.txt")?;
9 say_hello(&mut local_file)?; // automatic trait object creation: &mut File -> &mut dyn Write

10
11 let mut bytes = vec![];
12 say_hello(&mut bytes)?;
13 assert_eq!(bytes, b"hello world\n"); // &mut Vec<u8> -> &mut dyn Write

Creating a trait object implies creating the fat pointer, making it point on the one side to the actual value
and on the other to the right vtable for its actual type.

35/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Generic functions and type parameters

We can rewrite our say_hello function as a generic (AKA polymorphic) function like this:
1 // fn say_hello(out: &mut dyn Write) -> std::io::Result<()> { // before
2 fn say_hello<W: Write>(out: &mut W) -> std::io::Result<()> { // now
3 out.write_all(b"hello world\n")?;
4 out.flush()
5 }

The function is now (explicitly) parametric over a type parameter W. In the rest of the definition W stands
for some type, which might vary across function invocations.

In source code, only the function signature has changed.
At runtime, the trait object is gone and we get monomorphization back! (like with &impl).

Thanks to type inference, in most cases you do not need to spell out the actual type W upon invocation,
it is automatically inferred. But you can spell it out if needed, with the turbofish syntax ::<type>:
// say_hello(&mut local_file); // implicitly inferred type parameter

say_hello::<File>(&mut local_file)?; // explicit type parameter File for W

36/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Trait bounds

In fn say_hello<W: Write>(...), the postfix : Write notation is a trait bound on W, which
means “a type W that (at least) implements the Write trait” (i.e., in type theory, that W must be a
sub-type of Write).

For multiple traits the syntax we have used before:
fn f(t: &(impl Trait1 + Trait2), u: &(impl Trait3 + Trait4)) -> usize { ... }

with trait bounds becomes:
fn f<T: Trait1 + Trait2, U: Trait3 + Trait4>(t: &T, u: &U) -> usize { ... }

Where clauses can be used to make function signatures more readable when you have multiple
arguments and/or traits:
fn f<T, U>(t: &T, u: &U) -> usize

where T: Trait1 + Trait2, // same trait bounds as before
U: Trait3 + Trait4

{ ... }

37/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Trait objects vs generics

Advantages of generics over trait objects:

Speed (no dynamic dispatch, zero-cost abstraction)
Multiple trait bounds are easier to express (&mut (dyn Trait1 + Trait2 + Trait3)
does not work)

Rule of thumb:

Use trait objects when you need to group together values of mixed types (that share a trait). The
additional flexibility could be worth the additional trait object/fat pointer.
Use trait objects if compile-time bloat becomes an issue (and the additional fat pointer at runtime
is not).
Use generics otherwise.

38/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Standard traits

39/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Standard traits

The Rust stdlib defines several noteworthy traits. Here are some of them:

Traits Purpose

Debug, Display formatting
[Partial]Eq, [Partial]Ord comparison
Sized (marker trait) values that have a fixed compile-time size
Copy, Clone values that can be copied
Deref, DerefMut smart pointers
AsRef, AsRefMut cheap reference-to-reference conversions
[Try]From, [Try]Into type conversions
Drop custom destructor hooks
Send, Sync concurrency

You have already used some of them in the past and you will use more in the future.
Let’s review some of them, in light of what you now know about traits.

40/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Formatting traits

The Display trait provides formatting to string capabilities and is meant for user-facing output.
1 use std::fmt;
2
3 struct Point { x: i32, y: i32 };
4
5 impl fmt::Display for Point {
6 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
7 write!(f, "({}, {})", self.x, self.y)
8 }
9 }

10
11 let origin = Point { x: 0, y: 0 };
12
13 println!("The origin is: {}", origin);
14 println!("The origin is: {origin}"); // same but nicer with interpolation syntax

The origin is: (0, 0)
The origin is: (0, 0)

41/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Automatic trait derivation and the Debug trait

Some traits can be automatically derived for you (= “implemented automatically at compile time”)
using the #[derive] macro, provided that trait-specific preconditions are fulfilled.
The Debug trait is similar to Display but meant for programmer-facing output.
Debug can be derived automatically for compound types, provided that all fields implement
Debug (which is the case for most stdlib types).

1 #[derive(Debug)]
2 struct Point { x: i32, y: i32 }
3 let c = Point { x: 0, y: 0 };
4 println!("c = {c}"); // user-facing output (Display)
5 println!("c = {c:?}"); // programmer-facing output (Debug)
6 println!("c = {c:#?}"); // Debug output with pretty printing (e.g., struct indentation)

c = (0, 0)
c = Point { x: 0, y: 0 }
c = Point {
x: 0,
y: 0,

}

42/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Comparisons traits

A tour of common gotchas when unit testing your Rust code:

Take #1:
1 struct Point { x: i32, y: i32 }
2
3 fn main() {
4 let p1 = Point { x: 1, y: 2 };
5 let p2 = Point { y: 2, x: 1 };
6 assert_eq!(p1, p2);
7 }

error[E0277]: `Point` doesn't implement `Debug`

Makes sense, in case of test failure the test harness needs to be able to show (to a programmer) the
values involved in the failed assertion.

Let’s add #[derive(Debug)] and try again. (Note: derivation preconditions are respected.)

43/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Comparisons traits (cont.)

Take #2:
1 #[derive(Debug)]
2 struct Point { x: i32, y: i32 }
3 fn main() {
4 let p1 = Point { x: 1, y: 2 };
5 let p2 = Point { y: 2, x: 1 };
6 assert_eq!(p1, p2);
7 }

error[E0369]: binary operation `==` cannot be applied to type `Point`
2 | struct Point {
| ^^^^^^^^^^^^ must implement `PartialEq<_>`

PartialEq is the trait denoting values that can be compared for equality. Implementers must provide
a fn eq(&self, other: &Rhs) -> bool method, which is implicitly invoked by the == operator.
It makes sense for such a requirement to exists for, well, an equality assertion.

PartialEq can be derived on structs and enums, provided all sub-fields are comparable as well.
So let’s derive it!

44/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Comparisons traits (cont.)

Take #3:
1 #[derive(Debug, PartialEq)]
2 struct Point { x: i32, y: i32 }
3 fn main() {
4 let p1 = Point { x: 1, y: 2 };
5 let p2 = Point { y: 2, x: 1 };
6 assert_eq!(p1, p2);
7 }

It works!

N.B. the comparison is partial in the mathematical sense of a partial equivalence relation�, which
allows for non-comparable values like NaN != NaN for floats. Implementers must ensure that a != b
if and only if !(a == b) (which does not hold for floats).

The stricter Eq trait exists as well (and is not implemented for floats).

Ord and PartialOrd are analogous traits for (partial) order relations.

45/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://en.wikipedia.org/wiki/Partial_equivalence_relation

Sized

A sized type is a type whose values have all the same size in memory. Most Rust types are sized:
numbers (obviously), enums (which always takes enough space for its largest variant), even Vec<T>
(think of the triple pointer/capacity/length, not of the referenced heap memory).

Sized is a marker trait, i.e., an empty trait which is just an indication for the type system.

All sized types implement the Sized trait automatically, you cannot implement it yourself.

Very few unsized type exists, e.g.: string and array slices str and [T] (without &).

(Image from Programming Rust�, full credits on last slide.)

46/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://www.oreilly.com/library/view/programming-rust-2nd/9781492052586/

Sized (cont.)

You can’t store unsized values in variables or pass them as arguments.
Basically the only think you can do with unsized values is reference them via (sized) pointers or
references.
Given there’s so little you can do with unsized values, type variables are bound by default to
Sized.

• When you write <T>, Rust interprets it implicitly as <T: Sized>.
• In those rare cases you need to relax the constraint you can write <T: ?Sized>, meaning “not

necessarily sized” (mnemonic: questionably sized).
• (To actually work in practice your code will need to always access unsized values through (sized)

references of some kind.)

47/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Clone

Clone indicates that values of a given type can be copied via the clone method: 1 2

pub trait Clone: Sized {
fn clone(&self) -> Self;

}

Expectation: the new copy is completely independent from the old one, which usually requires
transitive/“deep copying” to implement clone() properly.

• E.g., cloning a Vec<String> requires copying both the vector itself and all contained strings.
Clone is derivable if all fields are Clone, making the common need of recursive cloning easy:

1 #[derive(Clone, Debug, PartialEq)]
2 struct Point { x: i32, y: i32 }
3
4 let x = Point { x: 0, y: 0 };
5 let y = x.clone();
6 assert_eq!(x, y);

1the Self type in traits can be used to reference the type of the implementer
2T1: T2 makes T1 a subtrait ot T2, i.e., all T1 values are also T2, T1 is more specific, T2 more general

48/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Copy

Copy—which you have encountered already on types that are exempt to the move rule—is another
marker trait, whose full definition is just:
trait Copy: Clone { }

You can implement (and even automatically derive) Copy for your types, but only if they can be safely
copied with a shallow byte-for-byte copy. E.g., they cannot own any heap-allocated memory. Think
carefully before making types Copy, as byte copies might become expensive for large structures.

If you really decide to, here’s an example:
1 #[derive(Clone, Copy)] // when derived together, Clone is implemented using memory copy
2 struct S { a: u32 };
3 let x = S { a: 42 };
4 let y = x; // no move occurs here
5 // both x and y can still be used here (y is a copy of x)

Q: can you implement Copy for Vec?

49/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Boxes

The Box<T> type is a generic type whose values own heap memory.
let t = (44, "cats");
let b = Box::new(t); // allocate enough heap memory to hold t; move t to b
// when b goes out of scope, drop b and free t's heap memory

Box is generic and uses T: ?Sized as trait bound.
Hence you can put most Rust values (including unsized ones!) in a box.
(Box values themselves are Sized though, phew.)

Q: can Box<T> be Copy?

Nope! For the same reason Vec<T> cannot.
As a rule of thumb: any type whose values need special handling when dropped (freeing heap memory
in the case of Box) cannot be Copy. (It is indeed forbidden by the compiler to implement both Drop
and Copy.)

50/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Deref

Boxes are generic smart pointers that: (1) move data to the heap upon creation, (2) free heap memory
upon destruction. It would be nice to manipulate them as regular Rust references! That is precisely
what the Deref/DerefMut traits allow you to do:

1 trait Deref {
2 type Target: ?Sized;
3 fn deref(&self) -> &Self::Target;
4 }
5 trait DerefMut: Deref { // subtrait: if you can borrow mutably, you can borrow readonly
6 fn deref_mut(&mut self) -> &mut Self::Target;
7 }

Given that: (1) the deref method is called implicitly upon dereferencing (* operator) and (2) smart
pointer types like Box implement the Deref trait, the following works out of the (errrm….) box:

1 use std::ops::Deref; // to pull deref() in scope
2 let b = Box::new(42);
3 assert_eq!(*(b.deref()), 42); // ugh
4 assert_eq!(*b, 42); // much nicer!

DerefMut is the mutable dereference counterpart of Deref.
51/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Deref coercion

Let’s reconsider the signature: fn deref(&self) -> &Self::Target.
It can be interpreted as a conversion function from references on the LHS to references on the
RHS, and is generally expected to be a cheap conversion (just follow some pointers).
Rust takes the liberty of automatically invoking the deref method in situations where, without
applying it, a type error would arise.
This process, that can be repeated multiple times, its called deref coercion.3 Here it is at work:

1 let s = Box::new(String::from("Hello, World!"));
2 assert_eq!(s.find('!'), Some(12));

A box doesn’t have a find method, so naively line 3 shouldn’t type check. To make it type check the
compiler first applies a deref coercion Box -> &String and then another deref coercion &String
-> &str (find is indeed provided by string slices).

3In type theory a coercion is precisely a function that can be applied to convert values of one type to another, in order to
make the type checker happy.

52/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

From and Into

You have already encountered From in the error-handling lecture. It goes hand-in-hand with Into and,
together, the two traits provide conversion capabilities that consume one value (taking owernship) to
produce another of a different type (returning ownership of the new value to the caller).

1 trait Into<T>: Sized {
2 fn into(self) -> T;
3 }
4 trait From<T>: Sized {
5 fn from(other: T) -> Self;
6 }

Into is often used to make your functions more flexible in the parameter they accept (replacing
function overloading in OOP languages), e.g.:

1 use std::net::Ipv4Addr;
2 fn ping<A>(address: A) -> std::io::Result<bool>
3 where A: Into<Ipv4Addr> // do not insist on receiving an IPv4 address,
4 // anything that can be *converted into one* would do
5 {
6 let ipv4_address = address.into();
7 ...
8 }

53/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

From and Into (cont.)

From is often used to provide constructors (similar to the use of factories and static methods in OOP
languages) of your values from different types, e.g.:

1 // Ipv4Addr implements From<[u8;4]> and From<u32>
2 let addr1 = Ipv4Addr::from([66, 146, 219, 98]); // No need to spell out actual type parameters,
3 let addr2 = Ipv4Addr::from(0xd076eb94_u32); // thanks to type inference.

From/Into contract:

From/Into conversions are not expected to be cheap; it is perfectly fine to copy memory and parse
data upon from/into. For cheap conversions check out the following traits: AsRef, AsMut,
Borrow, BorrowMut.
From/Into conversions are expected to be infallible and the trait interface only allows them to panic
upon failure. For fallible conversions there are the companion TryFrom/TryInto traits, whose
main methods return Result<Self, Self::Error>.

Conveniently, Into is implemented automatically when the complementary From trait is implemented.

54/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

More on generics

55/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Generics and type restrictions

The notion of generic code is not specific to traits. It just often happens that your code cannot be fully
generic and needs to restrict what it is generic on. As traits are the Rust way of structuring the type
“hierarchy”, trait bounds is what we use to specify those constraints.

E.g., a generic function to return the minimum of two values needs to be able to compare them:
1 fn min<T: Ord>(value1: T, value2: T) -> T {
2 if value1 <= value2 {
3 value1
4 } else {
5 value2
6 }
7 }

56/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Generic structs

Some code can be very generic though. For instance you have already use the Vec<T> type; vectors
can contain almost4 any type.

Of course you can also define your own generic types. Generic structs are quite common, here is an
example:

1 pub struct Queue<T> {
2 older: Vec<T>,
3 younger: Vec<T>
4 }

for any (sized) type T you can have a Queue<T>. The type parameter T is reused in the definition as
we have seen in the case of traits: a Queue<u32> will have younger and older fields, each of type
Vec<u32>.

4Remember that a type parameter T is bound by default by <T: Sized>
57/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Generic structs (cont.)

impl blocks for generic types can implement generic associated functions that exist for all T:
1 impl<T> Queue<T> { // note the double <T>
2 pub fn new() -> Self {
3 Queue { older: Vec::new(), younger: Vec::new() }
4 }
5 pub fn push(&mut self, t: T) {
6 self.younger.push(t);
7 }
8 }
9 let mut q1: Queue<u32> = Queue::new();

10 let mut q2: Queue<f64> = Queue::new();

as well as type-specific associated functions that exist only for some T:
1 impl Queue<f64> {
2 fn total(&self) -> f64 { ... }
3 }
4
5 // assert_eq!(q1.total(), 0_f64);
6 // error[E0599]: no method named `total` found for struct `Queue<u32>` in the current scope
7 assert_eq!(q2.total(), 0_f64);

58/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Generic traits and operator overloading

Operator overloading is implemented in Rust relying on traits.

Some operators are mapped to method invocations, e.g., a + b becomes a.add(b);
The involved methods are defined in trait interfaces;
Custom types can implement the relevant traits to overload the meaning of an existing operator.

We have already seen an example of this for the Deref trait and the * dereferencing operator. As
another example, here is the trait that Rust uses for the addition operator +:5

1 pub trait Add<RHS> { // RHS (right hand side) is the type parameter for the right operand
2 type Output; // resulting type after addition
3 fn add(self, rhs: RHS) -> Self::Output;
4 }

Add is a generic trait. It can be implemented multiple times for each actual type RHS. For operator
overloading in general you will implement it once for each right operand type you want to support.

For a fun complete example see: https://doc.rust-lang.org/rust-by-example/trait/ops.html.
5See https://doc.rust-lang.org/book/appendix-02-operators.html for a mapping between operators and traits.

59/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://doc.rust-lang.org/rust-by-example/trait/ops.html
https://doc.rust-lang.org/book/appendix-02-operators.html

Iterators

60/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Traits as type relationships

Most of the traits seen so far say something about a specific type: Display that its values can be
pretty-printed, Clone that they can be cloned.
Some traits can establish relationships between types.
Generic traits, like std::ops::Add for addition overloading, are one way to do so: they
establish a relationship between the LHS and RHS operand types.
Associated types are types defined within a trait (rather than as a type parameter) that must be
provided by each trait implementation.
Iterator and iterator types are a prime example of trait associated types, let’s have a look.

61/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

The Iterator trait

Most modern languages provide an idiomatic way to iterate over value sequences. The Rust way of
doing so is based on the Iterator trait:

1 pub trait Iterator {
2 type Item;
3 fn next(&mut self) -> Option<Self::Item>;
4 // ... many default methods, discussed later in this lecture
5 }

Item is an associated type, representing what you receive at each iteration step.
next is called to obtain the next element in the iteration; None means you reached the end.

• Note the mutable borrow via the &mut self argument, needed because iterators are stateful.
Note that the trait interface does not define how to obtain an iterator from something that is not an
iterator itself, only what you can do with an iterator.

62/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Iterator implementation — example
1 struct Counter { value: u8 }
2
3 impl Iterator for Counter {
4 type Item = u8;
5
6 fn next(&mut self) -> Option<Self::Item> {
7 match self.value {
8 255 => None,
9 _ => { self.value += 1; Some(self.value) }

10 }
11 }
12 }
13 fn main() {
14 let mut c = Counter { value: 0 };
15 while let Some(v) = c.next() {
16 println!("v = {v:?}");
17 }
18 }

v = 1
v = 2
...
v = 255

63/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

IntoIterator and for loops

Types that have a natural way of being iterated over are called iterables. They can implement the
companion IntoIterator trait to provide an easy way for obtaining an iterator.

1 trait IntoIterator where Self::IntoIter: Iterator<Item=Self::Item> {
2 type Item; // required: iteration item type
3 type IntoIter: Iterator; // required: iterator type
4 fn into_iter(self) -> Self::IntoIter; // an iterator please!
5 }

Rust’s for loops use IntoIterator transparently, hence the following:
1 let salad = vec!["tomato", "lettuce", "onion"]; // Vec<T> implements IntoIterator
2 for ingredient in &salad {
3 println!("{}", ingredient);
4 }

becomes:
2 let mut iterator = (&salad).into_iter(); // an iterator please!
3 while let Some(ingredient) = iterator.next() {
4 println!("{}", ingredient);
5 }

N.B.: iterators automatically implements IntoIterator, so you can pass them to for too.
64/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Obtaining iterators

Most collection and slice types provide iter and iter_mut methods to obtain iterators on
contained values.
iter returns an iterator over shared references; iter_mut over mutable ones

1 let v = vec![4, 20];
2 let mut iterator = v.iter(); // request an iterator over &i32 values
3 assert_eq!(iterator.next(), Some(&4));
4 assert_eq!(iterator.next(), Some(&20));
5 assert_eq!(iterator.next(), None);

1 let mut v = vec![4, 20];
2 let mut iterator = v.iter_mut(); // request an iterator over &mut i32 values
3 let e: &mut i32 = iterator.next().unwrap();
4 *e = 42;
5 assert_eq!(v, [42, 20]);

This is just a naming convention. If there is more than one way to iterate over a sequence-like
type, the documentation will provide guidance. E.g., &str does not have .iter() and provides
separate .bytes() and .chars() methods instead.

65/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Iterating over collections

Most collection types provide different implementations of IntoIterator, depending on how you
reference the collection:

Given a shared reference (to the collection object), you obtain an iterator producing shared
references to the contained items.
Given a mutable reference, an iterator producing mutable references to the contained items.
Given a collection passed by value, an iterator that takes ownership of the collection (consuming it)
and produces the contained items.

Given that for in implicitly uses IntoIterator, mind the difference between:
for element in &collection { ... } // shared refs
for element in &mut collection { ... } // mutable refs
for element in collection { ... } // contained items (consuming collection!)

66/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

The iterator language

67/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Iterator adapters

The Iterator trait requires very little from implementers (Item and next) and provides in
exchange many methods� with default implementations.
Taken together those methods form a DSL (Domain Specific Language) for iterator manipulation
that can express concisely programming logic that is then executed in an efficient manner.
In the following we will take a brief example-based tour of the most important iterators methods,
focusing on two categories:

• Iterator adapters, which consume iterators to build new ones adding useful behaviour (similar to
filters in pipeline architectures, like UNIX pipelines), and

• Iterator consumers, which consume iterator to produce a “final” result (similar to sinks in pipeline
architectures).

68/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://doc.rust-lang.org/std/iter/trait.Iterator.html#provided-methods

Lambda expressions — preview

Lambda expressions (from the 𝜆-calculus�) are expressions that denote anonymous functions.
They are also called closures in the common case where they capture context from the enclosing
environment.
You will learn all about closures in a future lecture, but as lambda expressions are frequently used
together with iterator adapters, we anticipate here their basic syntax.
|x| x + 42 is a valid Rust expression, denoting an anonymous function that takes an
argument x as input and returns the sum of it and 42 as output.
Multiple arguments can be accepted on the LHS with the |x, y, z| syntax.
A code block { ... } can be used on the RHS if you need to execute instructions before
returning a value.

1 assert_eq!((|x| x + 40)(2), 42); // anonymous lambda expression applied right away
2
3 let prod = |x, y| x * y; // lambda expression bound to a name
4 assert_eq!(prod(6, 7), 42);
5
6 let peek_next = |x| { println!("got {x}"); x + 1 }; // lambda expression with a block
7 assert_eq!(peek_next(41), 42); // prints "got 41" as side effect

69/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://en.wikipedia.org/wiki/Lambda_calculus

map

The map adapter takes a function and consumes an iterator to produce a new one where each element
is the result of applying the function to the corresponding element of the original iterator.
fn map<B, F>(self, f: F) -> impl Iterator<Item=B>

where Self: Sized, F: FnMut(Self::Item) -> B;

1 let text = " ponies \n giraffes\niguanas \nsquid".to_string();
2 let v: Vec<&str> = text.lines()
3 .map(str::trim)
4 .collect();
5 assert_eq!(v, ["ponies", "giraffes", "iguanas", "squid"]);

70/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

filter

filter produces a new iterator where only the elements satisfying a given predicate (passed as a
function argument to filter) are produced.
fn filter<P>(self, predicate: P) -> impl Iterator<Item=Self::Item>

where Self: Sized, P: FnMut(&Self::Item) -> bool;

1 let text = " ponies \n giraffes\niguanas \nsquid".to_string();
2 let v: Vec<&str> = text.lines()
3 .map(str::trim)
4 .filter(|s| *s != "iguanas")
5 .collect();
6 assert_eq!(v, ["ponies", "giraffes", "squid"]);

71/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

filter_map

filter_map combines filter and map into a single more expressive adapter:
fn filter_map<B, F>(self, f: F) -> impl Iterator<Item=B>

where Self: Sized, F: FnMut(Self::Item) -> Option;

1 use std::str::FromStr;
2 let text = "1\nfrond .25 289\n3.1415 estuary\n";
3 for number in text.split_whitespace()
4 .filter_map(|w| f64::from_str(w).ok())
5 {
6 print!("{:4.2}, ", number.sqrt());
7 } // prints: "1.00, 0.50, 17.00, 1.77, "

which could be preferable over multiple filter/map passes:
1 text.split_whitespace()
2 .map(|w| f64::from_str(w))
3 .filter(|r| r.is_ok())
4 .map(|r| r.unwrap())

flat_map is a similar adapter, where each f call can return multiple elements.
72/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

flatten

flatten concatenates together the items produced by multiple iterators:
fn flatten(self) -> impl Iterator<Item=Self::Item::Item>

where Self::Item: IntoIterator;

1 let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
2 let flattened = data.into_iter().flatten().collect::<Vec<u8>>();
3 assert_eq!(flattened, &[1, 2, 3, 4, 5, 6]);

Q: why does the following work:
1 assert_eq!(vec![None, Some("day"), None, Some("one")].into_iter()
2 .flatten()
3 .collect::<Vec<_>>(),
4 vec!["day", "one"]);

Because Option comes with a surprisingly useful .iter() method!
1 let x = Some(4);
2 assert_eq!(x.iter().next(), Some(&4));
3 let x: Option<u32> = None;
4 assert_eq!(x.iter().next(), None);

73/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

take and take_while

take and take_while allow to cut an iterator short.
fn take(self, n: usize) -> impl Iterator<Item=Self::Item>

where Self: Sized;

fn take_while<P>(self, predicate: P) -> impl Iterator<Item=Self::Item>
where Self: Sized, P: FnMut(&Self::Item) -> bool;

1 let message = "To: author\r\n\
2 From: superego <editor@example.com>\r\n\
3 \r\n\
4 Did you get any writing done today?\r\n\
5 When will you stop wasting time plotting fractals?\r\n";
6 for header in message.lines().take_while(|l| !l.is_empty()) {
7 println!("{}" , header);
8 }

To: author
From: superego <editor@example.com>

skip and skip_while are the complementary adapters to skip initial items.

74/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

rev and reversible iterators

Some iterators (not all: why?), called reversible iterators, can produce elements from either end of the
underlying sequence. They implement the subtrait:
trait DoubleEndedIterator: Iterator {

fn next_back(&mut self) -> Option<Self::Item>;
}

Reversible iterators provide a rev adapter to reverse iteration order:
fn rev(self) -> impl Iterator<Item=Self>

where Self: Sized + DoubleEndedIterator;

1 let meals = ["breakfast", "lunch", "dinner"];
2 let mut iter = meals.iter().rev();
3 assert_eq!(iter.next(), Some(&"dinner"));
4 assert_eq!(iter.next(), Some(&"lunch"));
5 assert_eq!(iter.next(), Some(&"breakfast"));
6 assert_eq!(iter.next(), None);

75/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

chain, enumerate, zip

chain concatenates multiple iterators.
1 let v: Vec<i32> = (1..4).chain(vec![20, 30, 40]).collect();
2 assert_eq!(v, [1, 2, 3, 20, 30, 40]);

enumerate adds an integer enumeration on the left in a pair:
1 let a = ['a', 'b'];
2 let mut iter = a.iter().enumerate();
3 assert_eq!(iter.next(), Some((0, &'a')));
4 assert_eq!(iter.next(), Some((1, &'b')));
5 assert_eq!(iter.next(), None);

zip combines two iterators into one over item pairs:
1 let a1 = [1, 2];
2 let a2 = [4, 5, 6];
3 let mut iter = a1.iter().zip(a2.iter()); // stop at the end of the
4 assert_eq!(iter.next(), Some((&1, &4)));
5 assert_eq!(iter.next(), Some((&2, &5)));
6 assert_eq!(iter.next(), None);

76/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

cloned, copied

Due to Rust memory model restrictions, you might encounter situations in which you need to
iter.map(|item| item.clone()) (but beware of the runtime cost!).

For convenience, a predefined .cloned() adapter to do so exists:
1 let a = ['1', '2', '3', '∞'];
2 assert_eq!(a.iter().next(), Some(&'1'));
3 assert_eq!(a.iter().cloned().next(), Some('1'));

.copied() is similar, for copying (Copy types only) instead of cloning (Clone).

77/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Consuming iterators

Several iterator consumer methods (or sinks) exist on iterators, restricted as needed by
appropriate trait bounds.
Here is just an overview, with a few examples in the following slides:

Purpose Method(s) Bounds

length measurement count
arithmetic operations sum, product Sum, Product
least/greatest element min, max Ord
quantifiers any, all
general recursion fold, rfold
selection nth, last, find
collection collect

For more—on both iterator consumers and adapters—refer to the documentation of the
Iterator trait� and that of the itertools crate� that provides even more advanced iterator
manipulation functionalities.

78/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://doc.rust-lang.org/std/iter/trait.Iterator.html#provided-methods
https://doc.rust-lang.org/std/iter/trait.Iterator.html#provided-methods
https://crates.io/crates/itertools

Consuming iterators — examples

1 fn factorial(n: u64) -> u64 {
2 (1..=n).product()
3 }
4 assert_eq!(factorial(20), 2_432_902_008_176_640_000);

assert_eq!([-2, 0, 1, 0, -2, -5].iter().min(), Some(&-5));

1 let id = "Iterator";
2 assert!(id.chars().any(char::is_uppercase));
3 assert!(!id.chars().all(char::is_uppercase));

fn fold<A, F>(self, init: A, f: F) -> A
where Self: Sized, F: FnMut(A, Self::Item) -> A;

1 let a = [5, 6, 7, 8, 9, 10];
2
3 assert_eq!(a.iter().fold(0, |n, _| n + 1), 6); // count
4 assert_eq!(a.iter().fold(0, |n, i| n + i), 45); // sum
5 assert_eq!(a.iter().fold(1, |n, i| n * i), 151_200); // product
6 assert_eq!(a.iter().cloned().fold(i32::min_value(), std::cmp::max), 10); // max

79/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Takeaways

80/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Takeaways

Structures and enumerations complete the palette of Rust compound types.
They can have associated implementation blocks, providing abstract data types.
Code reuse is supported in Rust by two forms of polymorphism: generics and traits.
Traits provide a way to define standard interfaces for capabilities shared by multiple types and
implement them.
Generics allow to write code once and use it in the context of different types, with no performance
penalties thanks to monomorphization.
A rich collection of traits already exist in the stdlib, providing a consistent way of addressing
common needs.
Iterators, implemented as traits, provide an idiomatic way of iterating sequence-like types,
including collections.
Iterators also provide an expressive DSL that can express powerful computations in a concise
manner wit no performance penalties.

81/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

Credits

Some slides have been adapted from the SE302b course� at Télécom Paris, by G. Duc and S.
Tardieu.
Some examples and images have been adapted from Chapters 11, 13, and 15 of the
Programming Rust� book.

82/82 2023-10-17 NET7212 — S. Tardieu & S. Zacchiroli Structuring data and organizing types

https://synapses.telecom-paris.fr/catalogue/2022-2023/ue/2663/SE302B-systemes-embarques-et-objets-connectes-partie-2
https://www.oreilly.com/library/view/programming-rust-2nd/9781492052586/

	More on composite types
	Traits and generics
	Standard traits
	More on generics
	Iterators
	The iterator language
	Takeaways

