
Asynchronous programming
NET7212 — Safe System Programming (in Rust)

Samuel Tardieu Stefano Zacchiroli
2023-11-21

Blocking, non-blocking and asynchronous I/O

2/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

What does a typical program do?

A typical computer program can do one or more of the following:

Input data from the user
Output data to the user
Read data from storage
Write data to storage
Read data from a network
Send data to a network
Compute something

3/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Splitting common actions into tasks

Some actions are composed of several smaller tasks. For example:

Read from storage: send the data address to the storage driver, wait for the data to have been
retrieved, then read the data
Query a database: send the request to the database, wait for the result, then read the result
Make a HTTP request: send the request to the server, wait for the result, then read the result
Answer a HTTP request: parse the request headers, wait for the request body to be fully received,
compute the result and send it

One common denominator between those actions is: at some point there is a need to wait for data
which is not instantly ready.

Waiting should not waste CPU cycles if the computer has other things to do.

4/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Wait times and parallelism

Input/output (I/O) services are provided by the operating system. When a thread does a blocking
request (a request whose result is not immediately available), the OS will mark it as waiting and will not
schedule it until the result is available.

A multithreaded web server answering requests by querying a database might work as follow:

The server binds a listening socket to the port it want to receive requests on (for example 443).
The server waits for a connection to happen.
When an incoming connection arrives, the server spawns a new thread to handle this connection
(while itself resuming its listening):

• The thread waits for the request to be sent.
• The thread sends a query to the database server and waits for the result.
• The thread sends the result to the connection, and resumes waiting for the next request.

On Linux, the default thread size is 10 MiB. If a server is popular, it might have to deal with tenths of
thousands of simultaneous connections, meaning that as many threads would be created, each one
with its stack ⇒ this is not scalable.

5/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Non-blocking I/O

On modern systems, every I/O operation happens through a file descriptor. A file descriptor can
correspond to an open file, a network socket, a special peripheral (standard input and output), etc.

Reading from, or writing to a file descriptor are by default potentially blocking operations: if an operation
cannot be completed immediately, the kernel suspends the thread, then resumes it when the operation
has been completed.

File descriptors can be configured in non-blocking mode: all operations will return immediately, with
error code EWOULDBLOCK if an operation is attempted and would result in blocking the calling thread.

A typical way to use non-blocking mode is:

check whether the operation (send data, receive data) would be possible without blocking;
then when it is, perform the operation.

The OS provides tools (select(), poll()) to check on the readiness of one or more file descriptors
at the same time with regard to read and write operations.

6/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Web server with non-blocking I/O

A web server using non-blocking I/O could:

setup a struct pollfd object to retrieve the state of:
• the socket it listens for new connections to arrive on (read mode)
• all sockets it is waiting for data to arrive on (read mode)
• all sockets it is waiting for data to be written to (write mode)

poll() this object: the kernel will block the calling thread until one of the polled file descriptors is
ready (some data can be read from or written to it), or until a timeout occurs
do what is requested on the corresponding file descriptor (read and write some data, maybe not
all, in which case the file descriptor will be polled again)
start a new thread when actual work has to be done (for example to produce the content of a web
page), or even do the work in the current thread if it is short enough

In this scenario, new threads are spawned only to do actual work, not for every incoming connection.
Thread pools can even be used to avoid having too many threads alive at the same time.

However, it complicates the program structure compared to a more linear execution form.

7/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

How is non-blocking I/O done?

In C:

A file can be opened with the O_NONBLOCK flag, or the flag can be set on any existing file
descriptor fd using fcntl(fd, SET_FL, O_NONBLOCK).
The system calls select() and poll() can poll several file descriptors.
Other OS-specific methods (pselect() and ppoll() on Linux, kqueue on BSD) offer finer
grained control.

In Rust:

Direct bindings can be used to interface with the C library’s select() and poll().
The mio� (Metal I/O) crate offers higher-level types and functions to perform those operations.

8/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

https://crates.io/crates/mio

Asynchronous I/O

Non-blocking I/O is powerful, but tedious:

one only knows that some bytes can be read or written from the file descriptor;
the operation must be restarted with the rest of the data to read or write.

Asynchronous I/O is different:

requests to read or write data always return immediately (as in non-blocking I/O);
the I/O subsystem uses the provided buffer to store the received data or to get the data to write to
the file descriptor;
the requester can query whether an operation is terminated or in progress;
the I/O subsystem can send a signal when the operation is complete (data fully read or fully
written, or an error occurred);
when an operation is complete, the requester can then use the data (in case of a read without
error) or free the buffer (in case of a write).

9/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Asynchronous I/O and callbacks

Asynchronous I/O are often used along with a callback subsystem. A simple design could be:

A signal handler is in charge of running previously registered callbacks when an asynchronous
operation terminates. It keeps a mapping of operation → callback.
When the signal arises, for every key the signal handler checks which operations are complete
and calls their callback, removing them from the mapping.
Just before calling the asynchronous operation, the user registers a callback with the signal
handler.

This way, any client of this callback subsystem can have some code execute when an asynchronous
operation is complete even though all completions are materialized using a single signal.

Variations are possible, for example by registering two callbacks (in case of success and in case of
error).

10/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Asynchronous I/O and callbacks: an example

An example in Javascript using node.js shows a callback being registers for the fs.readFile()
operation:1

1 const fs = require("fs");
2 fs.readFile("/file.md", (err, data) => {
3 if (err) throw err;
4 console.log(data);
5 });
6 moreWork(); // will run before console.log

fs.readFile() takes care of registering the anonymous function given as second argument with the
builtin signal handler before starting the operation.

1Source nodejs.org�
11/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

https://nodejs.org/en/docs/guides/blocking-vs-non-blocking/

Asynchronous I/O and callbacks: another example

Another example2 shows how much chained asynchronous I/O operations disrupt the program flow:
1 const fs = require("fs");
2 fs.readFile("/file.md", (readFileErr, data) => {
3 if (readFileErr) throw readFileErr;
4 console.log(data);
5 fs.unlink("/file.md", (unlinkErr) => {
6 if (unlinkErr) throw unlinkErr;
7 });
8 });

Callbacks are a great functionality, but force the programmer’s (and the reader’s) mind to switch into
“parallel/asynchronous mode”. Such programs are harder to review, and bugs may be harder to find
when they happen in the middle of a callback chain.

2Also from nodejs.org�
12/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

https://nodejs.org/en/docs/guides/blocking-vs-non-blocking/

The fault is not Javascript’s, it is the callbacks’ one

Rust has a Future type to represent the result of a not-yet-ready operation. Combinators allow the
programmer to use a callback-like style:

1 // Using fictitious asynchronous operations
2 let fut = open("/file.md")
3 .or_else(|e| panic!("open error: {e}"))
4 .and_then(|fd|
5 fd.read_file()
6 .or_else(|e| panic!("read_file error: {e}"))
7 .and_then(|data|
8 unlink("/file.md").or_else(|e| panic!("unlink error: {e}")).and_then(|_| data)
9)

10);
11 // Later, run request on an executor (here we only have one future to run, we could have
12 // several of them)
13 let data = executor.block_on(fut);

Again, callbacks are great, but they can make the code unreadable when deeply chained.

13/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Asynchronous I/O pitfalls

In addition to the “callback chain mess”, there are other ways asynchronous I/O can go wrong:

The user might reuse the buffer being asynchronously written, for example to prepare the next
request.
The user might read incomplete data from a buffer, before the read operation has terminated.

Those pitfalls exist in blocking I/O as well, but require the buffer to be accessible from multiple threads
at once, a situation which is usually avoided.

The main difficulty with asynchronous I/O is that the programmer has to structure the code around the
asynchronicity.

There must be a better way.

14/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Futures and async/await

15/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Our goal

We want to transform this code, which builds a Future using combinators:
1 let fut = open("/file.md")
2 .or_else(|e| panic!("open error: {e}"))
3 .and_then(|fd|
4 fd.read_file()
5 .or_else(|e| panic!("read_file error: {e}"))
6 .and_then(|data|
7 unlink("/file.md").or_else(|e| panic!("unlink error: {e}")).and_then(|_| data)
8)
9);

10 let data = executor.block_on(fut);

into something like
1 let fut = async {
2 let data = open("/file.md").await?.read_file().await?;
3 unlink("/file.md").await?;
4 Ok(data)
5 };
6 let data = executor.block_on(fut)?;

16/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Note on the syntax

1 let fut = async {
2 let data = open("/file.md").await?.read_file().await?;
3 unlink("/file.md").await?;
4 Ok(data)
5 };
6 let data = executor.block_on(fut)?;

async { … } creates an asynchronous block, i.e., an anonymous Future.
async { … } captures variables from its environment as needed, like a closure.
async move { … } transfers all captured variables into the asynchronous block.
.await in an asynchronous block waits for a Future to terminate.
.await? is just .await followed by ?, this is not a special syntax. It is useful if the Future
being awaited returns a Result or an Option.

The program flow starts to look familiar and resembles a traditional blocking flow.

17/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Asynchronous functions

get_and_delete() will return a Future containing a file content and delete it, or an error:
1 pub fn get_and_delete(name: String) -> impl Future<Output = Result<String, std::io::Error>> {
2 async move { // move is needed here to capture `name` into the future
3 let data = open(&name).await?.read_file().await?;
4 unlink(&name).await?;
5 Ok(data)
6 }
7 }

This can be written even more concisely. This async fn desugars into the code above:
1 pub async fn get_and_delete(name: String) -> Result<String, std::io::Error> {
2 let data = open(&name).await?.read_file().await?;
3 unlink(&name).await?;
4 Ok(data)
5 }

In both (equivalent) cases, calling get_and_delete(file_name) will return a Future. Future
in Rust are lazy, and must be passed to an executor in order to progress.

18/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

The Future type in Rust

The std::future::Future trait represents a computation whose result will be available later:3

1 trait Future {
2 type Output;
3 fn poll(self: Pin<&mut Self>, context: &mut Context<'_>) -> Poll<Self::Output>;
4 }

The first call to poll() starts the computation. poll() returns:

Poll::Ready(result): the result is available without delay
Poll::Pending: the result is not available yet, try again later

While it would be possible to call poll() repeatedly until the result is ready, it would be most inefficient.
The Context contains a callback (a waker) that the operation started in the background must call to
indicate that progress has been made (e.g., when it is complete).

3Pretend you do not see the Pin type at the moment, and consider it as a smart pointer.
19/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

A Future unrolled

The code in poll() for a future fut returning the first 100 bytes of a file might:

prepare a buffer to store the content;
register with the asynchronous I/O signal handler the association between asynchronous read
operation and the callback passed in the context;
start the asynchronous read of the file;
return Poll::Pending.

When the asynchronous read terminates, the operating system sends the asynchronous I/O signal,
which in turn checks the associations and find that the asynchronous read is complete. It calls the
callback, which tells the executor that fut.poll(context) should be called again. This call will:

see that the asynchronous operation has completed;
return Poll::Ready(buffer) with the 100 first bytes of the file (at most).

20/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

The executor is in charge

The executor is in charge of polling the Future when it is useful to do so.

Executor Future Signal handler Kernel

Hardware reads data from storage
!

H
W

intr

poll() Register waker

Start async read

Poll::Pending

async signalCall waker

poll()

Poll::Ready(…)

A minimal executor contains:
/// Execute `fut` to completion
fn block_on<T, F>(fut) -> T

where F: Future<Output = T>

This future may itself launch
sub-futures by calling their poll()
method from its own poll()
method, passing them the same
waker. As soon as one sub-future
progresses, the top-level future
poll() method will be called by
the executor.

21/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Future and parallelism

The futures� crate contains utilities to help working with futures, such as:

join(fut1, fut2): return a Future returning a couple (r1, r2) with the result of both
futures
select(fut1, fut2): return a Future returning a Either value. Either::Left(r1) if
fut1 terminates first, Either::Right(r2) if fut2 terminates first.

If fut_iter is an iterator producing Future objects with the same type:

join_all(fut_iter): return a Future returning a Vec with the result of all futures
select_all(fut_iter): return a Future returning the result of the first terminating future
along with its index

22/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

https://crates.io/crates/futures

Parallelism example

get_and_delete_many() works on several files in parallel:
1 pub async fn get_and_delete(name: String) -> Result<String, std::io::Error> {
2 let data = open(&name).await?.read_file().await?;
3 unlink(&name).await?;
4 Ok(data)
5 }
6
7 pub async fn get_and_delete_many(names: Vec<String>) -> Result<Vec<String>, std::io::Error> {
8 let results: Vec<Result<String, std::io::Error>> =
9 join_all(names.into_iter().map(get_and_delete)).await;

10 // An iterator of `Result<T, E>` can be collected into `Result<Vec<T>, E>`
11 results.into_iter().collect()
12 }

It should be noted that:

names.into_iter().map(get_and_delete)4 is an iterator producing futures
join_all() produces a future from the iterator, and we await it

4The last part is equivalent to .map(|name| get_and_delete(name)) through η-conversion
23/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

What about lifetimes?

name was captured in get_and_delete() because async fn desugars into a function returning a
async move block. But what if the name was given as a &str?

The naïve version without using async fn fails to compile:
1 pub fn get_and_delete(name: &str) -> impl Future<Output = Result<String, std::io::Error>> {
2 async { // no `move` needed to capture `name` as references implement Copy
3 let data = open(name).await?.read_file().await?;
4 unlink(name).await?;
5 Ok(data)
6 }
7 }

error[E0700]: hidden type for `impl Future<Output = …>` captures lifetime that does
not appear in bounds

As expected from Rust, async and async move build an anonymous Future whose lifetime cannot
exceed the lifetime of captured parameters, just like a closure does.

24/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Solving the lifetime issue

There are several ways this particular lifetime issue can be tackled. One obvious way would be to make
a new copy of the name and capture it inside the async block:

1 pub fn get_and_delete(name: &str) -> impl Future<Output = Result<String, std::io::Error>> {
2 let name: String = name.to_owned();
3 async move { // `move` needed to capture `name` inside the block
4 let data = open(&name).await?.read_file().await?;
5 unlink(&name).await?;
6 Ok(data)
7 }
8 }

In this case, the returned future does not reference anything from the environment, and its lifetime is
'static: it will leave until the end of the program (or until it gets consumed), even if the original name
is deallocated.

This solution wouldn’t work with async fn though: the String was copied with .to_owned()
before creating the async move block. In an async fn, the whole function body is put in the async
move block while desugaring, the early copy cannot be done this way.

25/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Solving the lifetime issue (con’t)

Another solution would be to accept that the returned Future is constrained by the input parameter
lifetime, and represent it into the function output type 5:

1 pub fn get_and_delete(name: &str) -> impl Future<Output = Result<String, std::io::Error>> + '_ {
2 async {
3 let data = open(name).await?.read_file().await?;
4 unlink(name).await?;
5 Ok(data)
6 }
7 }

The future will have to be used or dropped before the end of &str lifetime. async fn will also
automatically add this lifetime restriction to the anonymous output type it desugars into. This works:

1 pub async fn get_and_delete(name: &str) -> Result<String, std::io::Error> {
2 let data = open(name).await?.read_file().await?;
3 unlink(name).await?;
4 Ok(data)
5 }

5According to lifetime elision rules, '_ in an output type represents the lifetime of &self/&mut self when it is the first
function parameter, or the unique input lifetime otherwise, in this case the lifetime of &str.

26/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Solving the lifetime issue (the end)

Using &[&str] instead of Vec<String> in get_and_delete_many() may be interesting6:
1 pub async fn get_and_delete_many(names: &[&str]) -> Result<Vec<String>, std::io::Error> {
2 let results: Vec<Result<String, std::io::Error>> =
3 join_all(names.iter().map(|name| get_and_delete(name))).await;
4 results.into_iter().collect()
5 }

Not using async fn requires naming the one input lifetime that will be copied into the output:
1 pub fn get_and_delete_many<'a>(names: &'a [&str]) ->
2 impl Future<Output = Result<Vec<String>, std::io::Error>> + 'a
3 {
4 async {
5 let results: Vec<Result<String, std::io::Error>> =
6 join_all(names.iter().map(|name| get_and_delete(name))).await;
7 // An iterator of `Result<T, E>` can be collected into `Result<Vec<T>, E>`
8 results.into_iter().collect()
9 }

10 }
6Note how .map(get_and_delete) cannot be used here as the type of the items (&&str) does not match the requires

type (&str). The compiler inserts an auto * before name in the function call: get_and_delete(*name).
27/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

How does the compiler build a Future from an async block?

The use case will be the following simple async move block (filename is a &str):
1 async move {
2 let file = open(filename).await?;
3 let data = file.read_file().await?;
4 file.close().await?;
5 Ok(data)
6 }

The idea is to transform it into an object implementing Future. poll() will be called: each time there
is a .await, poll() will return Poll::Pending if the awaited future is not immediately ready. The
next time poll() will be called, the work must resume at the right point.

In the theory of computation, this is called a finite-state machine (or FSM).

28/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

async block hand-waving: the FSM

The following three slides are a schematic view (or some hand-waving�) of what happens when an
async block is transformed. The real process is different, but works roughly the same way.

The compiler builds a state machine to preserve the state and all variables alive accross each wait point
and will implement Future on it:
enum $AsyncBlock42<'filename> {

Start { filename: &'filename str },
AwaitLine2 { $future: OpenFut }, // OpenFut is the type returned by `open()`
AwaitLine3 { file: File, $future: ReadFileFut },
AwaitLine4 { data: String, $future: CloseFut },

}

filename is a captured variable; since it is a reference type, it requires an explicit lifetime. It is only
stored in Start because it is no longer used after the await point at line 2. file however is alive
accross the await points at line 3.

If a variable is alive accross several await point, it must always end up at the same offset from the
beginning of the structure for reasons that will be explained later.

29/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

https://en.wikipedia.org/wiki/Hand-waving

async block hand-waving: poll()
1 impl Future for $AsyncBlock42<'_> { // `'filename` will never be referenced, use `'_`
2 type Output = Result<String, std::io::Error>;
3 fn poll(self: Pin<&mut Self>, context: &mut Context<'_>) -> Poll<Self::Output> {
4 match self.as_mut() {
5 &mut $AsyncBlock42::AwaitLine3 { ref mut file, ref mut $future } => {
6 if let Poll::Ready(x) = $future.poll(context) { // `file.read_file()` is completed
7 let x = match x { // Expansion of `?` from source
8 Ok(x) => x,
9 Err(x) => return Poll::Ready(Err(x.into())),

10 };
11 let data = x; // From source
12 let $future = file.close(); // From source
13 *self.as_mut() = $AsyncBlock42::AwaitLine4 { data, $future }; // Progress
14 self.poll(context) // Poll the next future
15 } else {
16 Poll::Pending // Wait again
17 }
18 }
19 … // Other variants not shown here
20 }
21 }
22 }

30/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

async block hand-waving: final expansion

So this code
1 pub async fn get_file_md(filename: &str) -> Result<String, std::io::Error> {
2 let file = open(filename).await?;
3 let data = file.read_file().await?;
4 file.close().await?;
5 Ok(data)
6 }

will produce
1 pub fn get_file_md(filename: &str) -> $AsyncBlock42<'_> { // Copy the input lifetime as 'filename
2 $AsyncBlock42::Start { filename } // Capture `filename`
3 }
4
5 enum $AsyncBlock42<'filename> { … }
6
7 impl Future for $AsyncBlock42<'_> {
8 type Output = Result<String, std::io::Error>;
9 fn poll(self: Pin<&mut Self>, context: &mut Context) -> Poll<Self::Output> { … }

10 }

31/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Self-referential structures

Rust is a language which likes to move objects around. By default, when ownership is transferred, the
underlying object can move around (for example when storing a field in a struct).

It is always safe to use std::mem::replace(): any mutable reference to a fixed-size object can be
used to replace the object with another one of the same type.

But what if an object could store a reference to itself? Would such an object be safe to move? For
example, if an object stored at address 0x3210 in memory contained a x field initialized to 3u64 and a
y field of type &u64 pointing to this x field?

x @0x3210: 3

y @0x3218: 0x3210

Fortunately, even though it is possible to build such an object, Rust lifetimes and borrowing rules will
prevent it from moving at all7.

7An example follows in a few slides.
32/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

async block and self-referential structures

Now what about this async block?
1 async {
2 let x = 3;
3 do_something().await;
4 let y = &x;
5 do_something_else().await;
6 f(y)
7 }

x and &y are both alive accross the await point at line 5: they will be stored in the FSM, and y (in
reality the y field) references the x field. This self-referential structure is built by the compiler, which can
do much more than the user, and is not burdened by lifetime considerations.

However, once stored at an address (e.g., 0x3210) where it will be used by the FSM, it must never
move again, or y will not point to the right place. How can this be achieved?

x @0x3210: 3

y @0x3218: 0x3210

33/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Preventing an object from moving

What can make an object move in safe Rust? As discussed already:

1. The owner of an object can transfer it. The object may move in the process.
2. The owner of a mutable reference to an object can std::mem::replace() this object with

another one. Not only will the referenced object move, but the owner can now transfer it and move
it again (item 1).

3. Any smart-pointer implementing DerefMut can be used to obtain a mutable reference to the
object. See item 2.

To prevent an object from moving, one must ensure that its owner cannot move it, and that no mutable
reference or smart pointer implementing DerefMut exist or can be obtained in safe Rust on this object.
However, to be useful, the object must still be accessible through non-mutable references, and maybe
even mutably through unsafe functions.

Pin is the solution to this problem.

34/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

The Pin wrapper over pointers

If P<T> is a smart-pointer or a reference over T (for example Box<T>, &mut T), Pin<P<T>> is a
smart-pointer which wraps an existing pointer or smart-pointer:

If P<T> implements Deref<Target = T>, Pin<P<T>> also does.
If T implements Unpin only: if P<T> implements DerefMut, Pin<P<T>> also does.
If T implements Unpin only: .into_inner() can be used to retrieve the inner P<T>.

As a consequence:

If T implements Unpin, Pin is mostly transparent: Pin<Box<T>> will act as a Box<T>,
Pin<&mut T> will act as a &mut T.
If T does not implement Unpin, Pin acts more like a non-mutable reference: Pin<Box<T>>
and Pin<&mut T> will implement Deref but not DerefMut. Only operations requiring a
non-mutable access (&self methods, but not &mut self methods) can be used.
If T does not implement Unpin, once a mutable reference (the only one) or a pointer
implementing DerefMut (the only one) has been wrapped into a Pin, it can never be unwrapped.

35/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

The Unpin marker trait

The Unpin marker trait is automatically implemented by almost all Rust types, as it is not possible to
build a self-referential structure other than locally in safe Rust, and this structure cannot ever be moved:

1 struct SelfRef<'a> {
2 x: u64,
3 y: Option<&'a u64>,
4 }
5
6 fn main() {
7 let mut s = SelfRef { x: 3, y: None };
8 s.y = Some(&s.x); // `s` borrows itself
9 let t = s; // Error: cannot move out of `s` because it is borrowed (line 8)

10 }

However, as soon as the compiler builds a self-referential data structure when transforming an async
block into a FSM, it marks this structure as !Unpin. If a reference or smart-pointer to an object of this
type is placed into a Pin, the object will never move again until it gets destroyed.

36/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Explaining poll() signature

The signature of the poll() function for the Future trait contains Pin<&mut Self>:
1 trait Future<T> {
2 type Output;
3 fn poll(self: Pin<&mut Self>, context: &mut Context<'_>) -> Poll<Self::Output>;
4 }

When writing the poll() method for a type implementing Future:

either the type is provably Unpin, as most types are: self may be freely used as a mutable
reference to the object;
or the type is not provably Unpin: the accessible operations on the objects are similar as those
through a non-mutable reference, or unsafe must be used.

But in what case could a user type implementing Future not be provably Unpin? Through generics!
Storing an object of an arbitrary type (this possibly !Unpin) into a structure will make it !Unpin.
Indeed, if a structure moves, its fields will also move; having one (possibly) unmovable field makes the
structure unmovable.

37/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Dealing with a !Unpin in poll()

Using unsafe allows to still get a mutable reference to self in poll() even though the type is
potentially !Unpin: it becomes the programmer’s responsibility to uphold Rust invariants, such as not
moving the object or its possibly Unpin fields.

For example, implementing join(fut1, fut2) as a future returning the results of both futures
fut1 and fut2 might imply designing a type like:

1 struct Join<T1, T2, F1: Future<Output = T1>, F2: Future<Output = T2>> {
2 fut1: F1,
3 fut2: F2,
4 …
5 }

Since F1 and F2 might be !Unpin, Join cannot be proven to be Unpin in all cases. In poll(), it
will require using unsafe to get access to &mut self.fut1 and &mut self.fut2, and put them
in Pin wrappers themselves in order to call their respective poll() method. They will not have
moved, the invariant is upheld.

Now that futures are thoroughly explained, it is time to use them in practice.
38/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Executors and libraries

39/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Executors

The standard library does not contain any executor. The most used executors are:

Tokio�: a modular full-fledged executor coming with bells and whistles
async-std�: an asynchronous version of the Rust standard library
smol�: a small and fast asynchronous runtime

In addition to the basic block_on() service, those executors offer many additional services:

I/O (file and network) versions of the common operations — using a blocking operation in a
Future (or an async block) would block the entire thread and defeat the purpose
timer centered functions, to implement delays, and timeouts

Tokio will be briefly presented through the next slides. Its full feature flag can be used during
development before trimming down the features.

40/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

https://tokio.rs
https://github.com/async-rs/async-std
https://github.com/smol-rs/smol

Tokio

Tokio comes with a handy attribute allowing to define an asynchronous main() function. Similarly, a
#[tokio::test] attribute decorates asynchronous test functions in lieu of #[test].

1 #[tokio::main]
2 async fn main() {
3 do_something().await;
4 }

Tokio comes with drop-in replacements of the standard library I/O types and modules:
1 use tokio::net::{TcpListener, TcpStream};
2
3 #[tokio::main]
4 async fn main() {
5 let listener = TcpListener::bind("127.0.0.1:6379").await.unwrap();
6 loop { // Accept then process one incoming connection at a time
7 let (socket, _) = listener.accept().await.unwrap();
8 process(socket).await;
9 }

10 }
11
12 async fn process(socket: TcpStream) { … }

41/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Tokio: spawning futures

Tokio also provides tokio::spawn(), which runs a future independently of the current one, thus
resembling the thread model:

1 use tokio::net::{TcpListener, TcpStream};
2
3 #[tokio::main]
4 async fn main() {
5 let listener = TcpListener::bind("127.0.0.1:6379").await.unwrap();
6 loop { // Accept an incoming connection and spawn a new future to handle it
7 let (socket, _) = listener.accept().await.unwrap();
8 tokio::spawn(process(socket)); // Run independently
9 }

10 }
11
12 async fn process(socket: TcpStream) { … }

Spawning a future will call its poll() automatically as long as it does not terminate. The result will be
lost, as spawning a future makes it live its own life. Channels can be used to communicate in this
scenario.

42/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

Tokio: synchronization tools

The Tokio crate contains several asynchronous channel models:

mpsc�: multi-producer single-consumer, similar to the one in the standard library
oneshot�: single value channel, both the sender and the receiver are consumed after use
broadcast�: multiple-producer multiple-consumer, every reader sees every message
watch�: single-producer multiple-consumer, every reader sees only the last value produced

Also, Tokio offers alternatives to the common synchronization tools. The Tokio variants are
asynchronous and will not block the whole thread: Mutex�, RwLock�, etc.

43/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

https://docs.rs/tokio/latest/tokio/sync/mpsc/index.html
https://docs.rs/tokio/latest/tokio/sync/oneshot/index.html
https://docs.rs/tokio/latest/tokio/sync/broadcast/index.html
https://docs.rs/tokio/latest/tokio/sync/watch/index.html
https://docs.rs/tokio/latest/tokio/sync/struct.Mutex.html
https://docs.rs/tokio/latest/tokio/sync/struct.RwLock.html

futures: the extension crate

The futures� crate augments the standard library functionalities:

The FutureExt� trait adds combinators (map(), filter(), etc.) to the Future trait.
The TryFutureExt� trait adds combinators (and_then(), or_else(), etc.) to the Future
trait when its output type is a Result.

Importing those traits into direct visibility using a use clause is enough to get those new methods
available on any Future object.

The crate also contains standalone functions to join()� and select()� futures (simultaneous
execution), or to build an anonymous future type from a poll()-like function:

1 use futures::future::poll_fn;
2 use futures::task::{Context, Poll};
3
4 fn hello(_cx: &mut Context<'_>) -> Poll<&'static str> {
5 Poll::Ready("Hello, World!")
6 }
7
8 let hello_future = poll_fn(hello);

44/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

https://crates.io/crates/futures
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html
https://docs.rs/futures/latest/futures/future/trait.TryFutureExt.html
https://docs.rs/futures/latest/futures/future/fn.join.html
https://docs.rs/futures/latest/futures/future/fn.select.html

Conclusion

In this class, the following points were made:

Blocking requests paralyze an entire thread even during waiting times.
Non-blocking I/O can free up threads but require more involvement from the programmer.
Asynchronous I/O are of a higher level than non-blocking I/O but can lead to a callback mess.
Futures combined with async/await lead to a more sequential program flow.
The Rust compiler transforms async/await blocks into a finite state machine (FSM).
The Rust compiler tries very hard to ensure that the programmer will not attempt to use
unmovable data, thanks to the Pin wrapper type and the Unpin marker trait.
Executors are not bundled with the Rust standard library. They come in various shapes and forms.
External crates add functionalities to the existing futures.

45/45 2023-11-21 NET7212 — S. Tardieu & S. Zacchiroli Asynchronous programming

	Blocking, non-blocking and asynchronous I/O
	Futures and async/await
	Executors and libraries

