
Multiprocessing pitfalls
NET7212 — Safe System Programming (in Rust)

Samuel Tardieu Stefano Zacchiroli
2023-12-05

Introduction

2/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Previously, on NET7212

Parallelism: performing multiple tasks simultaneously
Why parallelism: performances, energy consumption
Two ways of managing multitasking in Rust: threads (lecture 8), async (lecture 9)
How Rust threads are safer than in legacy system programming
How Rust async is different than in other programming languages

There is another (still) popular way of implementing multitasking on UNIX systems:
fork()-based multiprocessing with IPC1-based communication between processes
This lecture: pitfalls in traditional multiprocessing and how to avoid them in Rust

1Inter Process Communication
3/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Fork-based multiprocessing — redux

Process creation:

fork(): “creates a new process by duplicating the calling process.”
• Called once, return twice: parent process + child process.
• The entire memory of the parent process is duplicated into the child, with copy on write (CoW)

optimization.
exec{l,v}{p,e,}(): “replaces the current process image with a new process image.”

• Used to execute an external program, usually after fork.
• Shelling out: UNIX programming pattern where a parent process fork+exec a separate program to

delegate a task to it.
• The separation between fork and exec allows to manipulate file descriptors destinations in

between, enabling input/output redirections between parent, child, and the filesystem.

4/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Inter-process communication (IPC) — redux

Q: how do processes communicate?

Communication vs Synchronization

IPC mechanisms (1):

wait(): “suspends execution of the calling thread until one of its children terminates.”
• Basic synchronization (“wait until termination”)
• Limited support for communication: integer sent from child to parent (upon termination)

pipe(): byte streams shared by processes belonging to the same family (i.e., a parent…child
path exists between them)

• Limited read/write atomicity guarantees (up to PIPE_BUF bytes)
mkfifo(): like pipes, but also among unrelated processes (via the filesystem)
signal() & kill(): notification of out-of-bound events
File locking: synchronization only, filesystem-based

• Can support safe (albeit slow) communication via the filesystem
• Implementations: flock(), fcntl(), lockf()

5/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Inter-process communication (IPC) — redux (cont.)

IPC mechanisms (2):

Unix domain sockets: like FIFOs, but with more advanced networking and session-control features
• Intuition: single-host networking

Message queues
• Implementations: POSIX message queues

Shared memory: memory regions accessible via raw pointers by multiple processes
• Synchronization not included!
• Implementations: mmap, POSIX shared memory

Semaphores
• Operations: P, V
• Implementations: POSIX semaphores

And much more if you leave the POSIX boundaries…

6/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Don’t call fork()

7/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Fork — what could possibly go wrong?

1 int main(int argc, char **argv) {
2 while (1) {
3 pid_t pid = fork();
4 if (pid == 0) {
5 do_stuff();
6 }
7 }
8 }

1. If do_stuff() doesn’t terminate, the child process will re-enter the loop, fork()-ing again →
potential fork bomb depending on what do_stuff() does.

2. Zombie apocalypse machine! → parent process does not wait for children,2 potentially creating a
lot of zombie processes.

Note how in both cases our reasoning on the potential problems is not local to the code we are auditing.

2at least based on what we can see in this snippet; can the child reaping logic be elsewhere?
8/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Fork — what could possibly go wrong? (cont.)

1 int main(int argc, char **argv) {
2 pid_t pid1 = fork();
3 pid_t pid2 = fork();
4 if (pid1 == 0) {
5 do_stuff1();
6 return 0;
7 }
8 if (pid2 == 0) {
9 do_stuff2();

10 return 0;
11 }
12 waitpid(pid1, NULL, 0);
13 waitpid(pid2, NULL, 0);
14 }

If both fork() succeed 4 processes, rather than 3, come out of line 3.
do_stuff1 is executed twice, not once.

(Imagine this broken logic in a busy loop… → fork() bomb.)

9/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Fork — what could possibly go wrong? (cont.)

1 int createChildAndSayHello() {
2 pid_t pid = fork();
3 if (pid == 0) {
4 sayHello();
5 return 0;
6 }
7 waitpid(pid, NULL, 0);
8 }

Child process return-s (to parent function) instead of exit-ing (= guaranteed to terminate).
The call stack is inherited by the child process at fork time.
Child process will return to the parent’s function who called createChildAndSayHello,
executing code probably intended for the parent process only.

10/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Fork — what could possibly go wrong? (cont.)
1 pid_t createChild(char *argv, int readFd, int writeFd) {
2 pid_t pid = fork();
3 if (pid == -1) { throw Exception("fork failed"); }
4 if (pid == 0) { // child
5 if (dup2(readFd, STDIN_FILENO) < 0) {
6 throw Exception("dup2 on stdin failed");
7 }
8 if (dup2(writeFd, STDOUT_FILENO) < 0) {
9 throw Exception("dup2 on stdout failed");

10 }
11 execvp(argv[0], argv);
12 throw Exception("exec failed");
13 }
14 return pid; // parent
15 }

Same footgun as before, C++ style!
Exceptions propagate up the call stack, so by only looking at this code we have no idea how the
various thrown exceptions will be handled.
They are thrown in the child (in between fork and exec), but could end up being handled by
code only mean to be executed by the parent.

11/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Fork — what could possibly go wrong? (cont.)

1 // A process running multiple threads arrives here.
2 pid_t pid = fork();
3 if (pid == 0) {
4 const char **args = malloc(sizeof(char *) * num_args);
5 execvp(args[0], args); // note: upon execvp() all memory will be freed
6 free(args); // if we are here, execvp() failed
7 exit(1);
8 }

Threads share a common virtual address space.
malloc() is thread-safe: it uses a lock to avoid memory corruption during allocation.
When you fork() from a multi-threaded process, a single-threaded child process is created.
The child gets a copy of parent’s memory, shared by all parent threads, including locks.
What if: thread 1 calls fork() while tread 2 holds the malloc() lock?
Child process will probably never free the lock (because it continues execution from thread 1
fork() point); when it will try to malloc() later it will deadlock.

→ Arguably the biggest danger with fork().

12/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Mixing threads and processes

Mixing multithreading and multiprocessing is generally a bad idea.
It is also hard to avoid with 100% certainty.
You can be sure that your code is not multi-threaded, but what about third-party code?

• Are you sure library code is not running a background housekeeping thread when you fork()?

(Yet another instance of the non-local reasoning problem when auditing code that we observed before.)

Rule of thumb
Don’t mix multithreading and multiprocessing.
(Yes, it’s hard to make sure you aren’t; that’s [system programming] life.)
If you really need to use multiprocessing: move children logic to a separate executable, exec it,
and make sure you exit after exec, just in case it fails.

13/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Fork’s pitfalls — recap

1. Accidentally nesting fork()-s when spawning child processes
2. Runaway children
3. Failure to clean up zombie processes
4. Thread-based deadlocks after fork()

14/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

fork+exec — flexibility or footgun?

fork+exec parallelism dates back to the 70’s. It is an excellent example of early UNIX design:
• “Do only one thing and do it well”
• “Everything is a file descriptor”
• Flexibility via chaining of operations. In between fork and exec you can:

– Rewire file descriptors → redirections
– Change signal masks, environment variables, CPU and memory pinning, etc.

More modern OS have more complex syscalls that do everything at once: CreateProcess*()
(Windows) and clone* (Linux, non-POSIX extension). From man 2 clone:
By contrast with fork(2), these system calls provide more precise control over what pieces of execution
context are shared between the calling process and the child process. For example, using these
system calls, the caller can control whether or not the two processes share the virtual address space,
the table of file descriptors, and the table of signal handlers.

Legacy UNIX fork/exec: more flexibility → more things that programmers can get wrong!
Solution: safe higher-level abstractions, implemented correctly once and for all.
Less flexible than fork+exec, but they remain around if you really need them.

15/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Rust at your Command

16/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Command

Part of the Rust stdlib, std::process::Command� provides a safe high-level abstraction to
shell out/delegate tasks to external programs via controlled fork+exec multiprocessing.
Based on the builder pattern�:

• you first provide a description of the command you want to execute → by concatenating invocations of
build methods,

• then you run the command → by invoking a terminal method.
Provides limited flexibility to customize the environment in which the external program will run:

• working directory,
• environment variables,
• stdio/stdout/stderr redirection.

Similar abstractions elsewhere: subprocess (Python), Boost.Process (C++).

17/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

https://doc.rust-lang.org/std/process/struct.Command.html
https://en.wikipedia.org/wiki/Builder_pattern

Command — command building

1 let command = if cfg!(target_os = "windows") {
2 Command::new("cmd")
3 .args(["/C", "echo hello"])
4 } else {
5 Command::new("sh")
6 .arg("-c")
7 .arg("echo hello")
8 };

Note: the command hasn’t been run yet, we are still building it using the DSL (Domain-Specific
Language) of Command methods chaining.
Arguments are well separated, each of them corresponding to an arvg element.

• No implicit interpretation of magic shell characters.
• Mitigates shell injection risks (but still…).

(This and the following examples are adapted from the Command’s stdlib doc�.)

18/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

https://doc.rust-lang.org/std/process/struct.Command.html

Command — running the command

Exit status only:
1 // pub fn status(&mut self) -> Result<ExitStatus>
2 let status = Command::new("cat")
3 .arg("file.txt")
4 .status() // block parent, waiting for child to terminate
5 .expect("failed to execute process");
6
7 println!("process finished with: {status}");

status() = fork + exec + waitpid

… minus the footgun!

19/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Command — running the command (cont.)

Output (stdout+stderr) capture too:
1 // pub fn output(&mut self) -> Result<Output>
2 let output = Command::new("cat")
3 .arg("file.txt")
4 .output() // block parent, waiting for child to terminate
5 .expect("failed to execute process");
6
7 println!("status: {}", output.status);
8 io::stdout().write_all(&output.stdout).unwrap();
9 io::stderr().write_all(&output.stderr).unwrap();

output() = fork + pipe + dup2 + exec + waitpid

… minus the footgun!

20/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Command — running the command (cont.)

Spawning and joining later:
1 // pub fn spawn(&mut self) -> Result<Child>
2 let mut child = Command::new("cat")
3 .arg("file.txt")
4 .spawn()
5 .expect("failed to execute child");
6
7 let ecode = child.wait()
8 .expect("failed to wait on child");
9

10 assert!(ecode.success());

21/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Command — environment fiddling

Environment variables:
1 Command::new("ls")
2 .env("PATH", "/bin") // add or replace entry
3
4 Command::new("ls")
5 .env_remove("PATH") // remove entry
6
7 Command::new("ls")
8 .env_clear() // remove all entries (e.g., for sandboxing)

Working directory:
1 Command::new("ls")
2 .current_dir("/bin")

22/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Command — environment fiddling (cont.)

Redirections:
1 let output = Command::new("echo")
2 .arg("Hello, world!")
3 .stdout(Stdio::null())
4 .output()
5 .expect("Failed to execute command");
6
7 assert_eq!(String::from_utf8_lossy(&output.stdout), "");

1 let output = Command::new("rev")
2 .stdin(Stdio::null())
3 .stdout(Stdio::piped()) // default value when using the output() terminator
4 .output()
5 .expect("Failed to execute command");
6
7 assert_eq!(String::from_utf8_lossy(&output.stdout), "");

23/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Command — environment fiddling (cont.)

Pre-exec function:
1 // unsafe fn pre_exec<F>(&mut self, f: F) -> &mut Command
2 // where
3 // F: FnMut() -> Result<()> + Send + Sync + 'static,
4 let cmd = Command::new("ls");
5 unsafe {
6 cmd.pre_exec(function_to_run);
7 }
8 let child = cmd.spawn();

From pre_exec doc�:
This closure will be run in the context of the child process after a fork. This primarily means that any
modifications made to memory on behalf of this closure will not be visible to the parent process. This
is often a very constrained environment where normal operations like malloc, accessing environment
variables through std::env or acquiring a mutex are not guaranteed to work (due to other threads
perhaps still running when the fork was run).

The unsafe block requirement acts as a reminder for these safety considerations.

24/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

https://doc.rust-lang.org/std/os/unix/process/trait.CommandExt.html#tymethod.pre_exec

Fork’s pitfalls vs Command

Accidentally nesting fork()-s when spawning child processes
Runaway children
Failure to clean up zombie processes

• Still a risk if you use spawn and forget to wait
• Mitigation: custom datatype that relies on Drop to reap zombies

Thread-based deadlocks after fork()

25/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Don’t call pipe()

26/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Pipe — redux

#include <unistd.h>

int pipe(int fds[2]);

(1) After calling pipe() (2) After calling fork() (3) After closing unused FDs

(Images from TLPI�.)

27/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

https://man7.org/tlpi/

Pipe — what could possibly go wrong?

Q: what do you think could go wrong with pipes?

Leaked file descriptors (common problem with all FD-based interfaces).
Calling close() on the wrong values (e.g., the wrong end of the pipe).
Use-before-pipe (i.e., performing I/O on uninitialized integer values… that could be valid file
descriptors!).
Use-after-close.

28/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Solution — simple cases

Most uses of pipe are related to redirections. We have already seen how Command support
those without having to manipulate pipes directly, e.g.:

1 let output = Command::new("echo")
2 .arg("Hello, world!")
3 .stdout(Stdio::null())
4 .output()
5 .expect("Failed to execute command");

To keep talking to a running process (a slightly more complex scenario) we can still manage with
Command, using Stdio::piped like this:

1 let mut child = Command::new("cat")
2 .stdin(Stdio::piped())
3 .stdout(Stdio::piped())
4 .spawn()?;
5
6 child.stdin.as_mut().unwrap().write_all(b"Hello, world!\n")?;
7 let output = child.wait_with_output()?;
8 drop(child_stdin); // close stdin

29/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Pipe — what could possibly go wrong? (cont.)

Deadlocks!

Scenario #1
Reading from a pipe is blocking as long as there is at least one open writer to the same pipe.
(After the last writer closes the pipe, reads immediately return an EOF.)
It is enough for a single writer to forgot to close a pipe when done to deadlock all readers. :-(

Scenario #2
Pipes are backed by a kernel buffer that can fill up. Writing to a full pipe is blocking.
Assume two processes (A, B) are communicating via two pipes (A2B for A→B communication and
B2A for B→A).
Process A fills up A2B; meanwhile process B fills up B2A.
Both blocks on their next write and cannot read to unblock their peer. → Deadlock :-(

30/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Pipe — going further with other higher level abstractions

In the same spirit of Command for fork+exec, there exist crates that offer safe abstractions for playing
with pipes (if you really need to!).

os_pipe� crate: abstracts other integer file descriptors for pipes
1 let (mut reader, mut writer) = os_pipe::pipe()?;
2 // XXX: If this write blocks, we'll never get to the read.
3 writer.write_all(b"x")?;
4 let mut output = [0];
5 reader.read_exact(&mut output)?;
6 assert_eq!(b"x", &output);

duct� crate: shell-like pipelines and redirections
1 let stdout = cmd!("echo", "hi").pipe(cmd!("sed", "s/i/o/")).read()?;
2 assert_eq!(stdout, "ho");

31/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

https://crates.io/crates/os_pipe
https://crates.io/crates/duct

Don’t call signal()

32/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Signals — redux

UNIX mechanisms to handle out-of-bound events.
Examples: segfault, division by zero, alarms, child process termination, Ctrl-C in the terminal, etc.
Emission: automatic (kernel and/or hardware), kill syscall� and CLI.
Legacy handling: signal syscall�.

From man 7 signal�:
Signal Standard Action Comment

SIGABRT P1990 Core Abort signal from abort(3)
SIGALRM P1990 Term Timer signal from alarm(2)
SIGBUS P2001 Core Bus error (bad memory access)
SIGCHLD P1990 Ign Child stopped or terminated
SIGCONT P1990 Cont Continue if stopped
SIGFPE P1990 Core Floating-point exception
SIGHUP P1990 Term Hangup detected on controlling terminal [...]
SIGILL P1990 Core Illegal Instruction
SIGINT P1990 Term Interrupt from keyboard
SIGKILL P1990 Term Kill signal
SIGPIPE P1990 Term Broken pipe: write to pipe with no readers [...]
[...]

33/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

https://man7.org/linux/man-pages/man2/kill.2.html
https://man7.org/linux/man-pages/man2/signal.2.html
https://man7.org/linux/man-pages/man7/signal.7.html

man 2 signal — warning
NAME
signal - ANSI C signal handling

SYNOPSIS
#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION
WARNING: the behavior of signal() varies across UNIX versions, and has also varied
historically across different versions of Linux. Avoid its use: use sigaction(2) instead.
See Portability below.

[...]

Portability
The only portable use of signal() is to set a signal's disposition to SIG_DFL or SIG_IGN.
The semantics when using signal() to establish a signal handler vary across systems
(and POSIX.1 explicitly permits this variation); do not use it for this purpose.

(Sounds familiar?)
34/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Signal — what could possibly go wrong?

OK, but that seems to be “just” a portability issue. What if we don’t care about that?
1 void exit_on_ctrl_c(int sig) {
2 _exit(1);
3 }
4
5 int main() {
6 signal(SIGINT, exit_on_ctrl_c);
7 while (1) {
8 sleep(1);
9 }

10 return 0;
11 }

Is this code safe?

Yes, it is, but for very specific reasons; it is not trivially safe.

It calls the _exit syscall instead of the exit stdlib function.
The signal handler will fire at most once.

35/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Signal — what could possibly go wrong? (cont.)
1 #define NUM_PROCESSES 10
2 static int sigchld_count = 0;
3
4 void count_sigchld(int sig) {
5 sigchld_count++;
6 }
7
8 int main() {
9 signal(SIGCHLD, count_sigchld);

10 for (int i = 0; i < NUM_PROCESSES; i++) {
11 if (fork() == 0) { // child
12 sleep(1);
13 exit(0); // will send SIGCHLD to parent
14 }
15 }
16 printf("Created %d child processes\n", NUM_PROCESSES);
17 for (int i = 0; i < NUM_PROCESSES; i++) wait(NULL);
18 printf("All %d children exited, received %d SIGCHLDs\n", NUM_PROCESSES, sigchld_count);
19 return 0;
20 }

Q: is this code correct?
36/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Signal — what could possibly go wrong? (cont.)

$./sigchld-count
Created 10 child processes
All 10 children exited, received 7 SIGCHLDs

(could be anything, up to 10 [rarely])

Can be made reliable using the sigaction syscall�.

Back in 2011, from a slide of yours truly for a system programming course: “sigaction, not signal,
should be used in all new code that deals with signals.”
More than a decade later, signal()-based code still abounds!

37/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

https://man7.org/linux/man-pages/man2/sigaction.2.html

Signal — what could possibly go wrong? (cont.)

1 void print_on_ctrl_c(int sig) {
2 printf("Received Ctrl-C, ignoring it :-P");
3 }
4
5 int main() {
6 signal(SIGINT, print_on_ctrl_c);
7 while (1) {
8 sleep(1);
9 }

10 return 0;
11 }

Q: is this code safe?

No, it can deadlock.

38/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Signal — what could possibly go wrong? (cont.)

Stdlib I/O functions work on buffered streams that are eventually flushed to destination.
Streams use file locks to work well out of the box in multithreaded contexts.
Your code might receive SIGINT while executing printf code that has just taken a lock.
The signal handler will try to execute printf, which will attempt to take the lock again, …
→ Deadlock :-(

Similar issues might arise when calling from a signal handler any other function that fiddles with a global
lock somewhere. (It is a situation similar to the thread/process mixing scenario, but without threads!)

So what can you safely do from within a signal handler?
Not much, the only functions you can call are async-signal-safe functions, a predefined (small)
set described in man 7 signal-safety�.
Note how memory allocation functions like malloc/free are not async-signal-safe functions.

39/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

http://man7.org/linux/man-pages/man7/signal-safety.7.html

Proper Decent signal handling (in general)

Signal handling is a bad, inherently unsafe API. You should avoid using it as much as possible.
For those cases in which you cannot avoid it, use the self-pipe trick�, invented by D. J.
Bernstein in the early 90s:

• General idea: minimize what the signal handler does: just note down that something has to be done
and let something else handle it later. In practice:

• To await a signal, block reading from a pipe; idea: you will read something from the pipe upon signal
reception.

• In the signal handler: write a single byte to the pipe and return.
Variants: main code periodically checks the pipe with polling, async IO, or a dedicated thread.
The Linux-specific signalfd syscall� (2007) is a kernel-supported version of the self-pipe trick.

40/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

https://cr.yp.to/docs/selfpipe.html
https://man7.org/linux/man-pages/man2/signalfd.2.html

Decent signal handling (in Rust)

CrtlC� crate: handles SIGINT only, using the self-pipe trick.
• Spawns a dedicated thread that:

loop {
// read from pipe ;
// call previously registered handler function ;

}

• The usual Rust guarantees about multithreaded code apply!

Signal-hook� crate: “Library for safe and correct Unix signal handling in Rust.”
• iterator module to iterate over pending signals synchronously, possibly in a dedicated thread;

asynchronous variants exist as well.
• flag module to react to specific signals by just setting a flag (safely) upon arrival.
• low_level module to register arbitrary actions, with chaining.

41/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

https://crates.io/crates/ctrlc
https://crates.io/crates/signal-hook

Takeaways

Many of the common patterns/API for handling parallel tasks in legacy system programming are
inherently unsafe.
We have reviewed some of the DONTS associated to the (still) popular legacy syscalls: fork,
pipe, and signal.
The general approach to solve these issues is working with higher-level safe abstractions,
implemented once and for all.

• fork → Command
• pipe → Command, possibly os_pipe
• signal → self-pipe trick, ctrlc, signal-hook

42/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

Credits

These slides contain material and ideas reused with permission from lecture 10 of Stanford’s
course CS 110L� (2021, 2022) by Ryan Eberhardt, Armin Namavari, Will Crichton, Julio Ballista,
and Thea Rossman.

43/43 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Multiprocessing pitfalls

https://web.stanford.edu/class/cs110l/

	Introduction
	Don’t call fork()
	Rust at your Command
	Don’t call pipe()
	Don’t call signal()

