
Supply chain attacks and Rust
NET7212 — Safe System Programming (in Rust)

Samuel Tardieu Stefano Zacchiroli
2023-12-05

Open Source Software Security

2/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Open Source is everywhere

Recent analyses1 by major industry players in the field of mergers and acquisitions (M&A)
software audits report that 99% of code bases audited in 2019 contained open source software
components, with 70% of all audited code being itself open source.
More open source software around → more vulnerabilities found in it.
All other factors being equal—e.g., security practices, programming technologies, funding, people
power, etc.—open source software is more secure than proprietary software, not less.2

1Synopsis: 2020 open source security and risk analysis report (OSSRA)�. Tech. rep., Synopsis (2020). With minor
variations, these numbers have been confirmed year after year for almost a decade now.

2For a list of pro/con arguments in this long-lasting debate see: Christian Payne: On the security of open source
software�. Inf. Syst. J. 12(1): 61-78 (2002).

3/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2020-ossra-report.pdf
https://doi.org/10.1046/j.1365-2575.2002.00118.x
https://doi.org/10.1046/j.1365-2575.2002.00118.x

Open Source Software Supply Chain Attacks

4/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

References

[Ohm20]: Marc Ohm, Henrik Plate, Arnold Sykosch, Michael Meier. Backstabber’s Knife
Collection: A Review of Open Source Software Supply Chain Attacks�. DIMVA 2020: 23-43.
[Ladisa22]: Piergiorgio Ladisa, Henrik Plate, Matias Martinez, Olivier Barais: SoK: Taxonomy of
Attacks on Open-Source Software Supply Chains�. IEEE S&P 2023: 167-184.

5/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://arxiv.org/abs/2005.09535
https://arxiv.org/abs/2005.09535
https://arxiv.org/abs/2204.04008
https://arxiv.org/abs/2204.04008

The software supply chain

Supply chain: the set of activities required by an organization to deliver goods or services to
consumers.
Software supply chain: the set of software components and software services required to deliver
an IT product or service to users.

• Libraries, runtimes, and other software component dependencies
• Base system (operating system, package manager, compiler, …)
• Development tools and platform (e.g., IDEs, build system, GitHub/GitLab, CI/CD, …)
• etc.

Key artifact for audits: SBOM = Software Bill of Materials
• “A SBOM is a nested inventory, a list of ingredients that make up software components.”3

3https://www.cisa.gov/sbom
6/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://www.cisa.gov/sbom

Supply chain attacks

A software supply chain attack is a particular kind of cyber-attack that aims at injecting malicious code
into an otherwise legitimate software product.

Notable examples

NotPetya (2017): ransomware concelaed in an update of a popular accounting software, hitting
Ukranian banks and major corps (B$).
CCleaner (2017): malicious version of a popular MS Windows maintenance tool, distributed via
the vendor website.
SolarWinds (2020): malicious update of the SolarWinds Orion monitoring software, shipping a
delayed-activation trojan. Breached into several US Gov. branches as well as Microsoft.

7/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Open source supply chain attacks

Is this specific to Free/Open Source Software (FOSS)? No.
But modern FOSS package ecosystems are heavily intertwined.

• Examples: NPM (JavaScript), PyPI (Python), Crates (Rust), Gems (Ruby), etc.
• 100/10k/1M packages, depending on each other due to code reuse opportunities.
• Reverse transitive dependencies grow fast. A single package could be required by thousands of

others.

8/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

left-pad (2016)

(Not an attack, but gives an idea of how entangled package ecosystems could be.)

function leftpad (str, len, ch) {
str = String(str);
var i = -1;
if (!ch && ch !== 0) ch = ' ';
len = len - str.length;
while (++i < len) { str = ch + str; }
return str;

}

Maintainer: “I have the right to delete my stuff”. “Unpublish” package.
Impact: “many thousands of projects”—including major ones like babel and atom—no longer
installable with npm.
NPM repository operators (a for-profit company) forcibly “un-unpublish” package.

9/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Open source supply chain attacks (cont.)

For an attacker, code injection into (transitively) popular leaf packages has a low opportunity
cost.
Also, entirely open FOSS package ecosystems (≠ Linux distros) can be easy to infiltrate.

10/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

(An) open source development workflow

(image from Ohm20�)

11/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://arxiv.org/abs/2005.09535

Attack tree — Injection

(image from [Ohm20])

Attacker’s goal: package P containing malicious code is available from download from a distribution
platform and P is a reverse transitive dependency of a legitimate package.

12/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Attack vector — Typosquatting

Injection → Create New Package → Typosquatting

1. Create a new package with a name similar (e.g., Levenshtein distance <= 2) to an existing
popular package, including malicious code. Examples:

• Squat on PyPI the Debian package name (“python-sqlite” v. “sqlite”)
• English variants (“color” v. “colour”)
• Unicode tricks

2. Upload it to a distribution platform (e.g., PyPI).
3. Wait for users to mistype (e.g., pip install python-sqlite).

Related attack vector: Use After Free

13/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Attack vector — Become maintainer

Injection → Infect Existing Package → Inject into Source → Commit (as maintainer) → Social
Engineering to become Maintainer

1. Package maintainer: “I no longer have time for this project, who wants to take over its
maintenance?”

2. Attacker: raises hand.
3. Attacker: releases new version including malicious code.

Might require early investment by the attacker to accrue enough “street credibility” to win over
maintenance at the right moment. For popular packages with low bus factor it could be worth it.

14/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Attack vector — Compromise build system

Injection of Malicious Code → Infect Existing Package → Inject during the Build → Compromise Build
System

Often, code run by users is written but not built by maintainers.
Rather, it is built by 3rd-party vendors.

• E.g., GNU/Linux distros, app store operators, arch “porters”.
It hence becomes attractive to break into vendor build systems, compromising binaries
“downstream”, without anybody auditing source code noticing.

15/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Attack vector — Exploit vulnerabilities

Injection of Malicious Code → Infect Existing Package → Inject into [Package] Repository System →
Exploit Vulnerabilities

Attack on the package repositories (≠ VCS repositories) used to distribute packages to the final
users.
Use known vulnerabilities to break into the package repository host.
Modify packages (without modifying their metadata) injecting malicious code that will trigger on
target systems.
Examples:

• Remote Code Execution on rubygems.org� (2017)
• Remote Code Execution on packagist.org� (2018)

16/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://justi.cz/security/2017/10/07/rubygems-org-rce.html
https://justi.cz/security/2018/08/28/packagist-org-rce.html

Attack tree — Execution

(image from [Ohm20])

There is a lot of variability in when the attack is executed, in terms of software life cycle (install/
test/ runtime).
There is also variability in if the attack is executed, e.g., to target specific users and lower the
chances of being detected in other contexts.

17/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Trusting 3rd-party builds

How can we increase users’ trust when running (trusted) FOSS code built by (untrusted)
3rd-party vendors?

18/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Reproducible builds

Learn more: Reproducible Builds project� and paper.4

4Chris Lamb, Stefano Zacchiroli: Reproducible Builds: Increasing the Integrity of Software Supply Chains�. IEEE Softw.
39(2): 62-70 (2022).

19/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://reproducible-builds.org
https://hal.science/hal-03196519/

Rust and supply chain attacks

20/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Debate

How do Rust and its ecosystem compare to other
languages/ecosystems in terms of supply chain security?

Poll: who think Rust is doing better/worse/same than others?
Do Rust safety features help against this class of attacks?
What’s the root cause of all these problems?

21/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Typosquatting in the Rust ecosystem — example
Security advisory: malicious crate rustdecimal�

The Rust Security Response WG and the crates.io team were notified
on 2022-05-02 of the existence of the malicious crate rustdecimal,
which contained malware. The crate name was intentionally similar
to the name of the popular rust_decimal crate, hoping that potential
victims would misspell its name (an attack called “typosquatting”).
To protect the security of the ecosystem, the crates.io team perma-
nently removed the crate from the registry as soon as it was made
aware of the malware. […]
The crate had less than 500 downloads since its first release on
2022-03-25, and no crates on the crates.io registry depended on it.
The crate contained identical source code and functionality as the
legit rust_decimal crate, except for the Decimal::new function.
When the function was called, it checked whether the GITLAB_CI
environment variable was set, and if so it downloaded a binary pay-
load into /tmp/git-updater.bin and executed it. The binary payload
supported both Linux and macOS, but not Windows.
An analysis of the binary payload was not possible, as the download
URL didn’t work anymore when the analysis was performed.

22/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://blog.rust-lang.org/2022/05/10/malicious-crate-rustdecimal.html

Root cause

Low to absent gatekeeping in public package manager repositories
• Everyone can create an account and upload (no maintainer gatekeeping)
• Everyone can “claim” a package name → no polishing/audit of the global package namespace (no

namespace gatekeeping)
Compare and contrast with the case of traditional GNU/Linux distributions.
The case of Debian:

• Package policies that covers package naming rules (see, e.g., the Debian Python Policy�)
• New packages (and packages that modify the package namespace) go through manual review

(Debian NEW queue�)
• Strictly controlled set of Debian developers, with a formal “hiring” process (see the Debian New

Members process�)
Argument against gatekeeping: go fast, reduce friction.

You can’t have it both way!
It’s either more friction and more control. Or less friction and less control.
(Up to now, the software industry has favored reducing friction.)

23/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://www.debian.org/doc/packaging-manuals/python-policy/
https://wiki.debian.org/NewQueue
https://nm.debian.org/
https://nm.debian.org/

Mitigations

The state of the art in addressing open source supply chain attacks is based on various mitigation
techniques. Key notions:

1. Know Your Software (KYSW): have a full, clear understanding of all your software dependencies.
– Ideally documented in a SBOM (Software Bill of Material).5

2. Audit regularly your dependencies and cross-reference them with knowledge bases of quality
information about them. Quality criteria: security, maintenance, best practices,6 licensing, etc.

Note that KYSW could already be very hard!, due to the dependency entanglement we have seen.
Automation is needed to minimize the risks of overlooking issues in the future.

• Ideal workflow: at each CI/CD build you automatically list all your dependencies, compare them
against up-to-date knowledge bases, raise warnings/failures if a known security vulnerability affects
the built artifact.

• Q: is this enough?

It is a complex technology space, which is moving very fast. In the following we will just highlight some
of the existing tools in the Rust ecosystem that help in taming the software supply chain.

5Software Bill of Materials�, NTIA, US Dept. of Commerce.
6Sample badging schemes: OpenSSF best practices�, OW2 best practices�.

24/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://ntia.gov/page/software-bill-materials
https://bestpractices.coreinfrastructure.org/
https://www.ow2.org/view/MRL/Full_List_of_Best_Practices

Know your Rust stack — cargo tree

We have seen how Cargo is both a package
manager and a build system.
One of the advantages of this joint design is
that Cargo has a very clear view of all the
(Rust) dependencies of a project.
cargo tree� is a builtin Cargo command
to show the dependency tree of a project.

Worth noting:
Dependency deduplication (*)
Detection of dependencies occurring in
multiple versions (--duplicates)
Q: Is this complete? Which dependencies
could you be missing?

$ cd /myproject
$ cargo tree
myproject v0.1.0 (/myproject)
`-- rand v0.7.3

|-- getrandom v0.1.14
| |-- cfg-if v0.1.10
| `-- libc v0.2.68
|-- libc v0.2.68 (*)
|-- rand_chacha v0.2.2
| |-- ppv-lite86 v0.2.6
| `-- rand_core v0.5.1
| `-- getrandom v0.1.14 (*)
`-- rand_core v0.5.1 (*)

[build-dependencies]
`-- cc v1.0.50

25/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://doc.rust-lang.org/cargo/commands/cargo-tree.html

The RustSec Advisory Database

The RustSec Advisory Database7 is the official, public database of known vulnerabilities affecting
the Rust ecosystem.
Data model: a mapping from crate names and versions ranges to security advisories describing
known vulnerabilities.

• Variant: also supports documenting security issues affecting the Rust toolchain (e.g., the compiler).
• Variant: also supports documenting affected functions within a crate, for finer-grained detection.

Examples:
• RUSTSEC-2023-0021�: NULL pointer derefernce in stb_image (C bindings)
• RUSTSEC-2023-0018�: Race Condition Enabling Link Following and Time-of-check Time-of-use

(TOCTOU)
• RUSTSEC-2023-0015�: Ascii allows out-of-bounds array indexing in safe code (dangerous in
--release mode)

• RUSTSEC-2021-0151�: ncollide2d is unmaintained

7Web site: https://rustsec.org/, raw data: https://github.com/RustSec/advisory-db
26/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://rustsec.org/advisories/RUSTSEC-2023-0021.html
https://rustsec.org/advisories/RUSTSEC-2023-0018.html
https://rustsec.org/advisories/RUSTSEC-2023-0015.html
https://rustsec.org/advisories/RUSTSEC-2021-0151.html
https://rustsec.org/
https://github.com/RustSec/advisory-db

Your supply chain vs the advisory database — cargo audit

cargo audit� is a cargo plugin command, maintained by the RustSec team (the same team
that maintains the advisory database).
Install: cargo install cargo-audit.
Basic idea: compare your full dependency tree (a-la cargo tree) against the RustSec advisory
database, emitting warnings/errors for each vulnerability (potentially) affecting your code base.

• The full advisory DB is retrieved/updated at each audit.
• Can be easily integrated into CI/CD toolchains.
• Rely on a static view of your dependency tree (does not build/inspect your code).
• Prone to both false positives and false negatives (why?).

cargo audit fix: attempts to automatically “fix” your dependencies, by upgrading them to
the next compatible (according to semantic versioning) and safe version. Note that it is not always
possible to do so.

27/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://github.com/RustSec/rustsec/tree/main/cargo-audit

cargo audit — example

$ cargo init auditme
$ cd auditme/
$ cargo add stb_image@=0.2.4
$ cargo add lingon
$ tail -n 3 Cargo.toml
[dependencies]
lingon = "0.1.0"
stb_image = "=0.2.4"
$ cargo tree
[huge dependency tree...]

Demo

Note how cargo audit is
not only about security
vulnerabilities; it also warns
about maintenance aspects,
because they can turn into
future vulnerabilities!

$ cargo audit
Fetching advisory database from `https://github.com/RustSec/advisory-db.git`

Loaded 527 security advisories [...]
Scanning Cargo.lock for vulnerabilities (71 crate dependencies)

Crate: stb_image
Version: 0.2.4
Title: NULL pointer derefernce in `stb_image`
ID: RUSTSEC-2023-0021
URL: https://rustsec.org/advisories/RUSTSEC-2023-0021
Solution: Upgrade to >=0.2.5

Crate: xml-rs
Version: 0.8.4
Warning: unmaintained
Title: xml-rs is Unmaintained
ID: RUSTSEC-2022-0048
URL: https://rustsec.org/advisories/RUSTSEC-2022-0048

error: 1 vulnerability found!
warning: 1 allowed warning found

28/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Auditing binaries — cargo audit bin and auditable

In some cases you only have an executable binary to audit and would like to know if it is affected
by a known vulnerability or not. cargo audit bin can do that. However:
In general, executables do not carry with them full SBOM information.

• In this case cargo audit bin will heuristically try to determine the packages and versions used
by a Rust binary based on panic! message strings.

A standard convention is under development8 to ship package version information within
executable binaries.

• It stores in a binary section (e.g., ELF on UNIX) a compressed JSON file including build-time
dependency information; it takes just a few KiB for very large dependency trees.

• cargo auditable9 is a Cargo build wrapper that store this information in built binaries.
• cargo audit bin uses the information, if available.

8https://github.com/rust-lang/rfcs/pull/2801
9https://github.com/rust-secure-code/cargo-auditable

29/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://github.com/rust-lang/rfcs/pull/2801
https://github.com/rust-secure-code/cargo-auditable

cargo audit bin and auditable — example

$ cargo build --release
$ cargo audit bin target/release/auditme
[...]
warning: target/release/auditme was not built with 'cargo auditable',
the report will be incomplete (8 dependencies recovered)

vs

$ cargo auditable build --release
$ cargo audit bin target/release/auditme
[...]
Crate: stb_image
Title: NULL pointer derefernce in `stb_image`
ID: RUSTSEC-2023-0021
[...]
Crate: xml-rs
Warning: unmaintained
ID: RUSTSEC-2022-0048

30/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

cargo deny

Auditing your software supply chain is more than just security (and maintenance).
Another common aspect is licensing, generally you want to verify that:

• All your dependencies have a license (because copyright default is “all rights reserved”).
• All your dependency licenses are mutually compatible.
• All your dependency licenses are compatible with your licensing strategy.

cargo deny10 is yet another Cargo plugin command that provides customizable auditing of
vulnerability and licensing aspects of your supply chain. For example:

• For vulnerabilities: you can specify severity filters and ignore patterns.
• For licensing: you can determine which licenses you accept, one by one or by categories (e.g.,

FSF-approved, OSI-approved, copyleft, permissive, etc.)
• More generally: you can veto specific packages, unmaintained ones, etc.

Your deny policy gets shipped with your code via a deny.toml file.
Pro: much more flexible than audit.
Con: much more verbose by default too, requires careful tuning.

10https://embarkstudios.github.io/cargo-deny/
31/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://embarkstudios.github.io/cargo-deny/

cargo vet

Ultimately, to maximize trust in your supply chain, you need to manually audit all the code in it,
both yours and 3rd party.
Good news: open source is fully auditable! Only a couple of problems remain:

1. Do you have enough time/energy to audit all this code?
2. How do you keep track of what to audit? (In particular over time, with new releases.)

cargo vet11 is a Cargo command plugin by Mozilla, meant to help with (2) (and partially also
with (1), via crowdsourcing).

11https://mozilla.github.io/cargo-vet/. Introductory article: https://lwn.net/Articles/897435/
32/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

https://mozilla.github.io/cargo-vet/
https://lwn.net/Articles/897435/

cargo vet — design

Keep track in supply-chain/audits.toml of what/by-whom has been audited:
[[audits.left-pad]]
version = "1.0" # flexible version ranges/patterns are supported too
who = "Alice TheAuditor <NothingGetsPastMe@example.com>"
criteria = "safe-to-deploy"

You decide your own audit criteria! Two predefined judgments: safe-to-{run,deploy}.
cargo vet: automatically check which dependencies are not audited (or exempted).
Supports an interactive workflow to: find audit targets, audit them, record outcome.
Also help with goal (2) (minimizing effort) via crowdsourcing:

• You can selectively import audits published by others:
[imports.foo]
url = "https://raw.githubusercontent.com/foo-team/foo/main/supply-chain/audits.toml"
[imports.bar]
url = "https://hg.bar.org/repo/raw-file/tip/supply-chain/audits.toml"

• Beware though: trust is not transitive!

33/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

Takeaways

Free/Open Source Software is nowadays everywhere in IT products. With its increased
prominence, it is becoming more common to encounter vulnerabilities in open source code.
Due to its development model and dependency entanglement, a new class of attacks is getting
traction: open source software supply chain attacks.
These attacks are not something other Rust features we have seen in this course (e.g., the type
system) will defend you against.
State-of-the-art defenses are based on knowing your software dependencies and periodically
audit them against known security vulnerabilities and other quality issues.
Rust tools that help you in doing that are: cargo {tree,audit,auditable,deny,vet}
together with the RustSec advisory database.

34/34 2023-12-05 NET7212 — S. Tardieu & S. Zacchiroli Supply chain attacks and Rust

	Open Source Software Security
	Open Source Software Supply Chain Attacks
	Rust and supply chain attacks

